Реферат: Прогнозирование макроэкономических переменных с помощью дублирующих портфелей
- действие экономических законов в будущем зависит не только от прошлого и настоящего состояний экономики, но и от управленческих решений, которые еще только должны быть приняты и реализованы;
- неполнота степени познания экономических законов, дефицит и недостаточная надежность информации.
Под методами прогнозирования следует понимать совокупность приемов и способов мышления, позволяющих на основе ретроспективных данных внешних и внутренних связей объекта прогнозирования, а также их измерений в рамках рассматриваемого явления или процесса вывести суждения определенного и достоверного относительно будущего состояния и развития объекта.
1.1 Макроэкономические модели в прогнозировании.
Экономико-математические модели в прогнозировании широко используются при составлении социально-экономических прогнозов на макроэкономическом уровне. К таким моделям относятся:
- однофакторные и многофакторные модели экономического роста;
- модели распределения общественного продукта (ВВП, ВНП, НД);
- структурные модели;
- межотраслевые модели;
- модели воспроизводства основных фондов;
- модели движения инвестиционных потоков и др.
При использовании этих моделей необходимо учитывать воздействие факторного, лагового и структурного аспектов сбалансированности экономики и их синтеза на основе принципа оптимальности.
Факторный аспект сбалансированности экономики основывается на взаимосвязи между объемом выпуска продукции и затратами факторов производства. Он сводится к определению такой пропорции между факторами производства, которая позволяет обеспечить заданный выпуск продукции. Для определения таких количественных пропорций используются показатели эффективности затрат живого и овеществленного труда и объемы этих затрат.
Лаговый аспект сбалансированности основан на распределении во времени затрат факторов производства и достигаемого при их взаимодействии эффекта. Главные лаговые характеристики связаны с воспроизводством основных фондов, а значит и с затратами капитальных вложений. Лаг – это запаздывание, временной интервал между двумя взаимозависимыми экономическими явлениями, одно из которых является причиной, а второе – следствием.
Структурный аспект сбалансированности основывается на пропорциях между I и II подразделениями общественного производства и взаимосвязях межотраслевых потоков продукции с элементами конечного потребления.
Условно все существующие методы прогнозирования можно разбить на две большие группы:
- фактографические, которые базируются на фактически имеющейся информации об объекте прогнозирования и его прошлом. Они условно подразделяются на статистические и аналоговые методы;
- экспертные методы используют мнения специалистов-экспертов и применяются тогда, когда невозможно формализовать изучаемые процессы или имеет место неопределенность развития хозяйственной системы.
1.2 Этапы экономико-математического моделирования
В различных отраслях знаний, в том числе и в экономике, этапы процесса моделирования приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла построения:
1. Постановка экономической проблемы и ее качественный анализ. Главное здесь – четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.
2. Построение математической модели. Это – этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений. Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.
Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше "работает" и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д.
Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).
3. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент – доказательство существования решений в сформулированной модели. Если удастся доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает и следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации.
4. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов.
5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.
6. Анализ результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов, о степени практической применимости последних.
Математические методы проверки могут выявлять некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели.