Реферат: Программирование и достижения компьютерной техники

Идея переложить на ЭВМ функции составителей алгоритмов и программистов дала новые возможности развитию сферы искусст­венного интеллекта, которая должна была создавать методы автома­тического решения интеллектуальных задач. Формализация знаний, которые есть у профессионалов в разных областях, накопление их в базах знаний, реализованных на ЭВМ, стали основанием для созда­ния экспертных систем. На основе баз знаний работают и ЭВМ V по­коления, и интеллектуальные роботы, и экспертные системы. Эти системы могут не только найти решение той или иной задачи, но и объяснить, как оно получено. Появилась возможность манипулировать знаниями, иметь знания о знаниях — метазнания. Знания, хра-няшиеся в системе, стали объектом ее собственных исследований.

Независимость языков высокого уровня от ЭВМ вовлекла в сферу алгоритмизации задач специалистов различных отраслей зна­ний, позволила использовать многочисленные стандартные типовые программы, а программистам — устранять дублирование в написа­нии программ для различных типов ЭВМ и значительно повысить производительность труда.

В конце 1980-х гг. в Японии и США появились проекты ЭВМ V поколения, реализованные в конце 1990-х гг. Прогресс в програм­мировании связан с прогрессом в архитектуре вычислительных сис­тем, отходом от фон-неймановской концепции, с достижениями в области искусственного интеллекта. Революционные изменения в элементной базе ЭВМ связываются с исследованиями по биоэлектронике.

На современном этапе программирование включает комплекс вопросов, связанных с написанием спецификаций (условий задач), проектированием, кодированием, тестированием и функционирова­нием программ для ЭВМ. Современное ПО для ЭВМ имеет слож­ную структуру и включает, как правило, ОС, трансляторы с различ­ных языков, текстовые программы контроля и диагностики, набор обслуживающих программ. Например, японские ученые для проек­тирования систем ПО разрабатывают идею «кольцевой структуры» шести уровней: 1-й (внутренний) — программы для аппаратуры; 2-й — ядро ОС; 3-й — программы сопряжения; 4-й — часть ОС, ориентированная на пользователя; 5-й — системы программирования; 6-й (внешний) — программы пользователя.

Согласно этим проектам научных исследований планируется упростить процесс создания программных средств путем автомати­зации синтеза по спецификациям исходных требований на естест­венных языках. В последнее время в Японии удалось создать робо­та-переводчика, переводящего английскую речь на японский язык и наоборот, осуществляя это голосом человека. Во всех развитых странах работают над комплексами программ для создания роботов. Для многих сфер человеческой деятельности.

Широкое применение структурных и объектно-ориентирован­ных методов программирования с использованием графических моделей объединялось отсутствием инструментальных средств. Это по­родило потребность в программно-технологических средствах спе­циального класса — CASE (ComputerAidedSoftwareEngineering), реализующих технологию создания и сопровождения ПО различных систем. Предпосылки для появления CASE-технологий возникли к концу 1980-х гг. Первоначально термин «CASE» применялся только к вопросам автоматизации разработки ПО, теперь программная инженерия имеет более широкое значение для разработки систем в целом. В CASE-технологии входит разработка и внедрение языков высокого уровня, методов структурного и модульного программирования, языков проектирования и средств их поддержки, формальных и неформальных языков описания системных требований.

В начале XXв. с созданием пишущей механической машинки появилась возможность общедоступного создания печатного текста, хотя внесение изменений в такой текст (исправление ошибок) было достаточно трудоемкой работой. Затем появились электрические пишущие машинки. С появлением персональных компьютеров подготовка печатного текста стала гораздо совершеннее. В последние два десятилетия прошлого века уже разрабатывается множество комплексов программ для обработки текстов, которые сначала получили название текстовых редакторов, а по мере расширения их функциональных возможностей — текстовых процессоров.

В начале этого столетия текстовые процессоры стали более совершенными. Наряду с более простыми (например ProfessionalWrite и др.) появились такие мощные, как MSWinWord (см. рис. 21), WordPerfectWordStar 2000 и др. Из отечественных широкое распро­странение получил текстовый процессор Лексикон.

С начала 1980-х гг. для подготовки и обработки числовой ин­формации стали использоваться табличные процессоры. В 1979 г. Д. Брикклин предложил первую программу для работы с электрон­ными таблицами VisiCalc. В 1981 г. была разработана система SuperCalc фирмы «ComputerAssociates», в 1982 г. — Multiplan фир­мы «Microsoft», далее — пакет для IBMPCLotusl-2-3 фирмы «LotusDevelopment», русифицированные пакеты АБАК, ДРАКОН и др. В 1985 г. появился табличный процессор Excel фирмы «Microsoft» первоначально для персонального компьютера Macintosh, а затем для совместимых с IBMPC. Этот процессор разрабатывался паралг лельно с ОС Windows, его версии вобрали в себя все черты графиче­ского интерфейса, вплоть до версий Excel 5.0 как приложения Windows 3.1, Excel 7.0 как приложения Windows 95 и т. д. В послед­ние годы создано достаточно много систем подготовки табличных документов, т. е. электронных таблиц, табличных процессоров (например, CorelQuattro 6.0 фирмы «CorelCo», Lotus 5.0 фирмы «LotusDevelopmentCo», OfficeProftessionalforWindows фирмы «Microsoft» и ДР-)- Но наиболее широко используют электронные табли­цы Excel.

Разработано большое количество стандартных реляционных систем управления базами данных — СУБД (например, MSAccess, paradox и др.), на основе которых строят реляционные базы данных в различных предметных областях.

Для многих организаций (особенно управленческих) разработа­ны так называемые офисные пакеты, в которых на основе единой ОС функционируют приложения, включающие в себя системы для работы с различными видами информации. Например, созданы па­кеты приложений к ОС Windows (MSOffice, WordPerfectOffice фир­мы «Corel», StarOffice фирмы «SunMicrosystems» и др.), которые включают программные средства для выполнения функций обработ­ки всех видов инфрмации. Например, MSOffice включает совершен­ствующиеся год от года (в зависимости от последней версии ОС Windows) средства обработки текста (MSWord), графики (PhotoDraw) и презентаций (PowerPoint), таблиц (Excel), баз данных (Access), электронной почты (Outlook), работы во Всемирной паути­не (FrontPage), создания звуковых клипов (MSSoundRecorder).

Мощным толчком в развитии новых направлений в программи­ровании послужило объединение компьютерных и телекоммуника­ционных технологий.

За рубежом в 1960-х гг. появились первые вычислительные сети, с которых началась техническая и технологическая революция, т. к. была предпринята попытка объединить технологию сбора, хране­ния, передачи и обработки информации на ЭВМ с техникой связи. В Европе в те годы были созданы международные сети EIN и Евро-нет, затем появились национальные сети. В 1972 г. в Вене была соз­дана сеть МИПСА, к которой присоединились в 1979 г. 17 стран Европы, СССР, США, Канада и Япония. В 1980-х гг. в нашей стра­не была создана система телеобработки статистической информа­ции, обслуживающая государственные и республиканские органы статистики. С 1980-х гг. развивается программирование для локаль­ных вычислительных сетей (ЛВС).

ЛВС — это коммуникационная система, которая поддерживает в пределах одного здания или некоторой ограниченной территории один или несколько высокоскоростных каналов передачи информа­ции, предоставляемых абонентским системам для кратковременного пользования. К 1990 г. эксплуатировалось свыше 0,5 млн серверов и 5 млн рабочих станций, работающих под управлением сетевых ОС (например NetWare компании «Novell»).

Глобальные вычислительные сети — это сети, использующие информационные ресурсы ЛВС, расположенных на большом рас­стоянии друг от друга (передача осуществляется с помощью теле­фонной сети через модемы или по выделенным каналам). Наиболее популярной является сеть Интернет, представляющая собой обще­мировую совкупность сетей, связывающая между собой миллионы компьютеров.

Сети позволили эффективно использовать аппаратные средства, программные средства и такие многопользовательские системы, как электронная почта, информационные системы на основе баз дан­ных, телеконференции и др. Особой популярностью пользуется сис­тема WWW (WorldWideWeb) — Всемирная паутина, т. е. всемирная распределенная база гипертекстовых документов. Пользователи, ис­пользуя для программирования язык гипертекстовой разметки HTML, создают свои сайты любой тематики и легко могут получать многообразную информацию, общаться с миллионами пользовате­лей компьютеров. В будущем планируется массовое использование так называемых информационных роботов (Knowbot) — новых сис­тем поиска и обработки информации в сети, в основе которых име­ются уже элементы экспертных систем, позволяющих анализиро­вать искомую информацию и готовить ее для выдачи в форме пре­зентаций.

С Интернетом тесно связаны понятия «киберпространство» и «виртуальная реальность». Киберпростраиством называют совокупность всех систем компьютерных коммуникаций и потоков информации, циркулирующих в мировых сетях. Виртуальная реальность — фантастический мир, создаваемый на экране компьютера, образы реального мира и процессов, в нем происходящих. С этими объек­тами и процессами можно работать как с реальными, проводить различные исследования, имитировать всевозможные ситуации, создавать прекрасные тренажеры для применения полученных на­выков в реальности. Поле деятельности для программистов огром­ное, поэтому общество заинтересовано в высококвалифицирован­ных специалистах этого профиля.

Что могут ЭВМ

Главная способность ЭВМ — способность к имитации объектов, явлений, механизмов, даже таких, которые не существуют в природе. Эта способность в сочетании с быстродействием — до миллиардов операций в секунду — основа эффективности ЭВМ.

Жизненные задачи обычно не являются четко сформулирован­ными. Поэтому, прежде чем обратиться к ЭВМ для решения зада­чи, задачу нужно четко сформулировать. Четкая формулировка задачи всегда основана на некоторых упрощающих предположениях, которые позволяют построить модель задачи, т. е. определить, что будет служить исходными данными, а что — результатом, и какова связь между исходными данными и результатом.

Для одной и той же задачи могут быть созданы разные модели, в зависимости от того, какие средства используются для ее создания, и какие предположения положены в ее основу.

Выбор исходных данных, описание результатов и соотношений в модели задачи зависят также от возможностей того, кто будет ее решать. Если задачу будет решать ЭВМ, «умеющая», например, только вычислять, то исходные данные и результаты должны быть представлены числами, а связи между ними — математическими соотношениями. Иначе говоря, нужно построить матема­тическую модель задачи. Это означает — выделить предположе­ния, на которых будет основана математическая модель; опре­делить, что считать исходными данными и результатами; за­писать математические соотношения (формулы, уравнения, не­равенства и так далее), связывающие результаты с исходными данными.

Если задача заменена ее моделью, то и ответ относится к модели и лишь опосредованно — к исходной задаче.

Созданием математической модели завершается первый этап решения задачи с помощью компьютера. Второй этап — составле­ние алгоритма (четкой инструкции, строго указывающей необхо­димую последовательность действий).

ЭВМ могут выполнять алгоритмы без участия человека, авто­матически. Но для этого нужно составить программу, т. е. за­писать алгоритм на одном из языков программирования.

Модель всегда основана на тех или иных упрощениях. Поэтому, проведя вычисления на ЭВМ, необходимо сопоставить результаты с экспериментальными фактами, теоретическими воззрениями и Другой информацией об изучаемом объекте. При этом может возникнуть необходимость уточнить математическую модель, полнее учитывая особенности изучаемого объекта. Уточнив модель, снова составляют алгоритм, проводят расчеты на ЭВМ и анализируют результаты, и так до тех пор, пока анализ результатов не покажет их приемлемое соответствие знаниям об изучаемом объекте. Проведение расчетов на ЭВМ и анализ результатов называется вычислительным экспериментом. Таким образом, в третий этап решения задачи с помощью компьютера помимо написания программы, входит вычислительный эксперимент.

Перевод задач на язык математики позволяет подключить для их решения мощные математические методы. Так, очень часто возникает задача изучения некоторой функции. Один из методов изучения функции с помощью ЭВМ — разбиение ее области опре­деления на маленькие промежутки. При этом предполагают, что на ка

К-во Просмотров: 216
Бесплатно скачать Реферат: Программирование и достижения компьютерной техники