Реферат: Прогрессивные технологические процессы промышленного производства
– радиационная полимеризация и сополимеризация, включающая получение древесно-полимерных и бетон-полимерных материалов, радиационное отверждение покрытий;
– радиационное сшивание полимеров и радиационная вулканизация эластомеров;
– радиационно-химический синтез (радиационное хлорирование, сульфохлорирование углеводородов);
– радиационное модифицирование неорганических материалов (улучшение адсорбционных и каталитических характеристик, радиационное легирование);
– радиационная очистка сточных вод.
Сегодня наблюдается явное смещение интересов использования ионизирующих излучений: от получения продуктов с уникальными и улучшенными свойствами к экономии сырья и энергии.
Фотохимические процессы – это химические реакции, протекающие под действием светового излучения или вызываемые им.
Механизм фотохимических процессов основан на активизации молекул, реагирующих веществ при поглощении света.
В зависимости от роли и характера влияния светового луча фотохимические процессы разделяют на три группы.
К первой группе относят реакции, которые могут самопроизвольно протекать после поглощения реагентами светового импульса. Для этих процессов свет играет роль возбудителя и инициатора. При обычных условиях эти процессы протекают крайне медленно, но световое облучение их значительно интенсифицирует.
Ко второй группе фотохимических процессов относят процессы, для проведения которых необходим непрерывный подвод световой энергии к реагентам.
К третьей группе относятся химические процессы, в которых световой импульс, воздействуя на катализатор, активизирует его и способствует интенсификации химической реакции.
Основные достоинства фотохимических процессов по сравнению с традиционными химическими воздействиями можно сформулировать следующим образом:
– возможность получения уникальных материалов, производство которых другими способами невозможно или экономически нецелесообразно;
– стерильность светового излучения и высокая чистота получаемых продуктов;
– смягчение условий проведения процесса (температуры, давления);
– возможность регулирования скорости процесса за счет изменения интенсивности светового потока и, следовательно, легкость автоматизации процесса;
– возможность замены в некоторых случаях многостадийных процессов синтеза одностадийными.
Фотохимические процессы находят широкое применение в органической химической технологии при синтезе новых химических соединений.
Еще одна большая группа принципиально новых технологий – плазменные, основанные на обработке сырья и полупродуктов концентрированными потоками энергии. Ныне известно более 50 таких технологий. Сформировалась и научная база этой группы технологий – плазмохимия, изучающая процессы, протекающие при среднемассовой температуре рабочего газа 8000-10000°С.
Техника плазменных технологий – это генераторы низкотемпературной плазмы – плазмотроны, единственные установки, позволяющие с высоким тепловым КПД (80-90%) осуществлять непрерывный регулируемый нагрев газа до столь высоких температур. Химия, металлургия, машиностроение – вот основные сферы применения плазменных технологии. Взять, к примеру, металлургию. Традиционные процессы здесь давно себя исчерпали, и ни техническое совершенствование агрегатов, ни их дальнейшее укрупнение уже не приносят сколько-нибудь существенного экономического эффекта. Вместо доменных печей для процесса восстановления железа вполне можно использовать плазмотроны. Кстати, это будут и компактные, и весьма производительные агрегаты – ведь процесс там будет идти при температуре не 800°С, а при гораздо более высокой. Добавим, что плазменные технологические процессы а отличие от традиционных экологически чистых, не выделяют в окружающую среду сернистых и иных вредных газов.
На базе плазменных методов можно организовать эффективную разработку бедных, так называемых забалансовых месторождений минеральных удобрений, в частности фосфоритов. Речь идет о способе азотнокислотной экстракции фосфоритов, причем азотную кислоту предлагается получать плазменным способом непосредственно из воздуха.
Важная особенность плазменных процессов заключается в том, что при высоких температурах химические реакции идут иначе, чем обычно. А это значит, что в плазмотронах можно получать материалы с новыми свойствами, в том числе принципиально новые – композитные. В разных отраслях успешно используется метод плазменного напыления – нанесения на поверхность деталей упрочняющих, термостойких, антикоррозионных, защитных, декоративных и других покрытий. Такие покрытия позволяют улучшить качество, повысить ресурс и надежность машин. Методом плазменного напыления можно восстанавливать изношенные поверхности деталей.
Благодаря плазменному упрочнению винты, изготовленные из обычной углеродистой стали, служат в несколько раз дольше винтов, чьи