Реферат: Происхождение и развитие звезд и Солнца

80

3*105

10

0,25

40

0,002

1000

1*108

2*103

5*1011

4

2*103

7

2*105

0,3

Однако во времена Джинса и даже гораздо позже астрономы не могли указать тот газ, из которого формируются звёзды. Пока они искали дозвёздное вещество, физики наконец поняли, почему звёзды светят. Исследования атомного ядра и открытие термоядерных реакций позволили объяснить причину длительного свечения звёзд.

Еще Гершель обнаружил на фоне Млечного Пути темные провалы, которые он называл «дырами в небесах». В конце XIX в. на Ликской обсерватории (США) астроном Эдуард Барнард начал систематическое фотографирование неба. К 1913 г. он нашел около 200 темных туманностей. По его мнению, они представляли собой облака поглощающей свет материи, а вовсе не промежутки между звездами, как считал Гершель.

Это предположение подтвердилось. Когда рядом с облаком межзвездного газа или внутри него нет горящей звезды, газ остается холодным и не светиться. Если бы облако содержало только газ, его могли бы и не заметить. Но помимо газа в межзвездной среде в небольшом количестве (около 1% по массе) есть мелкие твердые частицы – пылинки размерами около 1 мкм и меньше, которые поглощают свет далеких звезд. Потому-то холодное облако и кажется темным «провалом в небесах». Детальное изучение Млечного Пути показало, что очень часто такие «провалы» встречаются в областях звездообразования, подобных туманности Ориона.

В 1946 г. американский астроном Барт Бок обнаружил на фоне светлых туманностей NGC 2237 в Единороге и NGC 6611 в Щите маленькие чёрные пятна, которые назвал глобулами. Размер их от 0,01 до 1пк. Они ослабляют свет лежащих за ними звёзд в десятки и сотни раз. Это значит, что вещество глобул в тысячи раз плотнее окружающего их газа. Их масса оценивается в пределах от 0.01 до 100 масс Солнца.

После открытия глобул появилось убеждение, что сжимающиеся облака дозвёздной материи уже найдены, что они-то и являются непосредственными предшественниками звезд. Но вскоре стала очевидной поспешность такого заключения.

Дело в том, что оптические телескопы не дают полного представления о межзвездной среде: с их помощью мы видим лишь горячие облака, нагретые массивными звездами (как туманность Ориона), или маленькие темные глобулы на светлом фоне. И те, и другие – довольно редкие образования. Только созданные в 50-е гг. радиотелескопы позволили обнаружить по изучению в линии 21 см атомарный водород, заполняющий почти все пространство между звездами.

Это очень разреженный газ: примерно один атом в кубическом сантиметре пространстве (по меркам земных лабораторий - высочайший вакуум!) но поскольку размер Галактики огромен, в ней набирается около 8 млрд. солнечных масс межзвёздного газа, или примерно 5% от её полной массы. Межзвёздный газ более чем на 67% (по массе) состоит из водорода, на 28% из гелия, и менее 5% приходится на все остальные элементы, самые обильные среди которых - кислород, углерод и азот.

Межзвездного газа особенно много вблизи плоскости Галактики. Почти весь он сосредоточен в слое толщиной 600 световых лет и диаметром около 30 кпк, или100 тыс. световых лет (это диаметр галактического диска). Но и в таком тонком слое газ распределен неравномерно. Он концентрируется в спиральных рукавах Галактики, а там разбит на отдельные крупные облака протяженностью в парсеки и даже в десятки парсек, а массой сотни и тысячи масс Солнца. Плотность газа в них порядка 100 атомов на кубический сантиметр, температура около – 200 С. Оказалось, что критические масса и радиус Джинса при таких условиях совпадают с массой радиусом самих облаков, а это значит, что готовы к коллапсу. Но главное открытие было еще впереди.

Астрономы подозревали, что при относительно высокой плотности и низкой температуре, царящей в межзвездных облаках, часть вещества должна объединяться в молекулы. В этом случае важнейшая часть межзвездной среды недоступна наблюдениям в оптическом диапазоне.

Начавшиеся в 1970 г. ультрафиолетовые наблюдения с ракет и спутников позволили открыть главную молекулу межзвездной среды – молекулу водорода (Н2 ). А при наблюдении межзвездного пространства радиотелескопами сантиметрового и миллиметрового диапазона были обнаружены десятки других молекул, порой довольно сложных, содержащих до 13 атомов. В их числе молекулы воды, аммиака, формальдегида, этилового спирта и даже аминокислоты глицина.

Около половины межзвёздного газа содержится в молекулярных облаках. Их плотность в сотни раз больше, чем у облаков атомарного водорода, а температура всего на несколько градусов выше абсолютного нуля. Именно при таких условиях возникают неустойчивые к гравитационному сжатию отдельные уплотнения в облаке массой порядка массы Солнца и становится возможным формирование звёзд.

Большинство молекулярных облаков зарегистрировано только по радиоизлучению. Некоторые, впрочем, давно известны астрономам, например тёмная туманность Угольный Мешок, хорошо видимая глазом в южной части Млечного Пути. Диаметр этого облака 12 пк, но оно выглядит большим, поскольку удалено от нас всего на 150 пк. Его масса около 5 тыс. солнечных масс, тогда как у некоторых облаков масса достигает миллиона солнечных, а размер 60 пк. В таких гигантских молекулярных облаках (их в Галактике всего несколько тысяч) и располагаются главные очаги формирования звёзд.

Ближайшие к нам области звездообразования — это тёмные облака в созвездиях Тельца и Змееносца. Подальше расположен огромный комплекс облаков в Орионе.

Молекулярные облака устроены значительно сложнее, чем знакомые нам облака водяного пара в земной атмосфере. Снаружи молекулярное облако покрыто толстым слоем атомарного газа, поскольку проникающее туда излучение звёзд разрушает хрупкие молекулы. Но находящаяся в наружном слое пыль поглощает излучение, и глубже, в тёмных недрах облака, газ почти полностью состоит из молекул.

К-во Просмотров: 406
Бесплатно скачать Реферат: Происхождение и развитие звезд и Солнца