Реферат: Происхождение Солнечной системы планетная космогония

Происхождение систем регулярных спутников планет, движущихся в направлении вращения планеты по почти круговым орбитам, лежащим в плоскости ее экватора, авторы космогонич. гипотез обычно объясняют повторением в малом масштабе того же процесса, к-рый они предлагают для объяснения образования планет Солнечной системы. Системы регулярных спутников имеются у Юпитера, Сатурна и Урана, к-рые обладают также кольцами из мелких твердых частиц. У Нептуна нет регулярной системы спутников и, по-видимому, нет колец. Совр. планетная космогония объясняет образование регулярных спутников эволюцией протоспутниковых дискообразных poев частиц, возникших в результате неупругих столкновений вблизи данной планеты планетезималей, двигавшихся по околосолнечным орбитам.

В системе регулярных спутников Юпитера имеется деление на две группы: силикатную и водно-силикатную. Различия в хим. составе спутников показывают, что молодой Юпитер был горячим (нагрев мог быть обусловлен выделением гравитац. энергии при аккреции газа). В системе спутников Сатурна, состоящих в основном из льда, нет деления на две группы, что связано с более низкой темп-рой в окрестностях Сатурна, при к-рой могла конденсироваться вода.

Происхождение иррегулярных спутников Юпитера, Сатурна и Нептуна, т. е. спутников, обладающих обратным движением, а также небольшого внеш. спутника Нептуна, обладающего прямым движением по вытянутой орбите, объясняют захватом.

У медленно вращающихся планет Меркурия и Венеры спутников нет. Они, по-видимому, испытали приливное торможение со стороны планеты и упали в конце концов на её поверхность. Действие приливного трения проявилось также в системах Земля-Луна и Плутон-Харон, где спутники, образуя с планетой двойную систему, всегда повёрнуты к планете одним и тем же полушарием.

Объяснение происхождения Луны потребовало детального исследования св-в околоземного роя частиц, существование к-рого поддерживалось в течение всего времени аккумуляции Земли неупругими столкновениями частиц в ее окрестностях.

Образование роя достаточной массы возможно лишь за счёт многочисл. столкновений наиболее мелкой фракции межпланетных частиц. Динамика роя позволяет подойти к объяснению различий в хим. составе Луны и Земли, черпавших вещество из одной и той же зоны. Преимуществ. попадание в рой мелких частиц могло одновременно привести к обогащению роя силикатным веществом, т. к. именно каменистые тела при столкновениях образуют мелкую пыль (в отличие от металлич. тел). На стадии мелкодисперсного вещества могли быть частично потеряны и летучие вещества, дефицит к-рых был обнаружен в лунных породах. Из спутникового роя могла образоваться система из неск. крупных спутников, орбиты к-рых с разной скоростью эволюционировали под действием приливного трения и к-рые в конечном счете объединились в одно тело - Луну. Анализ состава и определения возраста доставленных в 70-х гг. 20 в. на Землю лунных пород показал, что Луна еще в ходе своего образования или вскоре после этого была разогрета и прошла магматич. дифференциацию, в результате к-рой сформировалась лунная кора. Изобилие крупных ударных кратеров на материковой части лунной поверхности показывает, что кора успела затвердеть ещё до того, как затухла интенсивная бомбардировка Луны формировавшими ее телами. Слияние Луны из неск. крупных тел (протолун) дает быстрое нагревание до 1000 К ее поверхностного слоя толщиной в сотни км, что лучше согласуется с ранней дифференциацией вещества Луны. При медленной аккумуляции Луны из мелких частиц выделившейся гравитац. энергии недостаточно для требуемого нагрева Луны. Альтернативные гипотезы нагрева Луны в результате распада короткоживущих радиоактивных изотопов и нагрева электрич. токами, индуцированными интенсивным солнечным ветром, требуют неприемлемо быстрого образования Луны на самом раннем этапе формирования Солнечной системы. Итак, наиболее вероятным представляется образование Луны на околоземной орбите, однако в литературе продолжают обсуждаться и маловероятные гипотезы захвата Землей готовой Луны и отделения Луны от Земли.

Заметное различие ср. плотности планет земного типа связано, по-видимому, со значит. различием общего содержания Fe и содержания металлич. Fe. Высокая плотность Меркурия (5,4 г/см3 ) указывает на то, что он содержит до 60-70% металлич. никелистого железа, тогда как низкая плотность Луны (3,34 г/см3 ) указывает на отсутствие в ней значит. количеств металлич. железа (менее 10-15%). Содержание богатого железом сплава в Земле составляет ок. 32%, в Венере - ок. 28%.

В 70-е гг. 20 в., одновременно с развитием представлений о последовательной конденсации различных веществ в остывающем протопланетном облаке, появилась гипотеза неоднородной (гетерогенной) аккумуляции планет, согласно к-рой полная аккумуляция нелетучих веществ в несколько крупных тел - ядер будущих планет - успевала произойти до заметного дальнейшего остывания облака и конденсации других, более летучих веществ. По этой гипотезе, формирующиеся планеты с самого начала оказываются слоистыми. В сочетании с предположением о конденсации сначала металлич. железа, а затем силикатов гипотеза гетерогенной аккумуляции объясняла возникновение железных ядер у Земли и Венеры. Однако она игнорировала надежные астрофизич. оценки скорости остывания облака: остывание должно происходить несравненно быстрее, чем аккумуляция продуктов конденсации. Выдвигалась также гипотеза, что ядра Земли и Венеры состоят в основном из силикатов и окислов, перешедших под действием давления вышележащих слоев в плотное металлич. состояние. В этом случае ядра Земли и Венеры содержали бы всего неск. % металлич. железа, т.е. приблизительно столько же, сколько ядро Луны, но меньше, чем ядро Марса (давление в недрах Марса и Луны заведомо слишком мало для перехода силикатов в металлич. состояние). Эксперименты по статич. сжатию вещества до давлений, близких к давлениям в ядрах Земли и Венеры, пока не позволяют сделать определенного вывода о возможности таких фазовых переходов с достаточно большим скачком плотности.

По-видимому, образование ядер у планет земной группы произошло вследствие отделения богатого железом расплава от ферромагнезиальных силикатов. Физикохимия процесса отделения железного расплава и динамика опускания его к центру планеты изучены пока недостаточно. В работах, посвященных анализу процесса расслоения первично однородных планет, наибольшее число расчетов проводится для Земли.

Начальное состояние и эволюция Земли


Земля росла из роя "промежуточных" тел, двигавшихся в широкой области между орбитами Венеры и Марса. Отличия в составе и плотности планетезималей были достаточно велики, на что указывает разность ср. плотностей этих планет. При падении тел на протоземлю они от удара разрушались, происходил нагрев вещества, сопровождавшийся дегазацией и дегидратацией. В результате перемешивания вещества при ударах хим. неоднородности частично сглаживались. Удары тел с размерами в десятки и более км приводили к накоплению существенной доли энергии на большой глубине, что являлось осн. источником нагрева планеты. Дополнит. разогрев происходил вследствие распада радиоактивных элементов и сжатия вещества под увеличивающимся давлением вышележащих (нарастающих) слоев. Согласно расчетам, центральная область Земли к концу ее образования была нагрета до 1000-1500 К, что меньше темп-ры плавления пород на этих глубинах. (В недрах планеты темп-ра плавления увеличивается с глубиной вследствие роста давления.) На глубинах 50-2000 км темп-ра превосходила темп-ру плавления железа, однако в целом ещё дифференцированное вещество вряд ли находилось в жидком состоянии. Поверхность же Земли вследствие быстрой теплоотдачи имела достаточно низкую темп-ру, уже тогда допускавшую существование первичных водных бассейнов. По-видимому, уже на заключит. этапах аккумуляции Земли началась крупномасштабная дифференциация вещества - отделение и уход в нижние горизонты тяжелых компонентов. Гравитац. энергия, выделявшаяся при расслоении Земли, в результате конвективных движений масс переносилась к поверхности Земли и содействовала ее обновлению, о чем говорит отсутствие на земной поверхности древнейших пород, с возрастами 3,8-4,5 млрд. лет. Не исключено, что разрушение первичной коры связано, как и у Луны, с поздней бомбардировкой падавшими телами. Наиболее легкие вещества всплывали ("выдавливались") на поверхность, постепенно слагая наружный слой земного шара - земную кору. Это был длит. процесс (неск. млрд. лет), к-рый в разных местах земного шара протек?

К-во Просмотров: 154
Бесплатно скачать Реферат: Происхождение Солнечной системы планетная космогония