Реферат: Производственная функция, свойства, эластичность
Изокванты могут иметь различную конфигурацию.
Линейная изокванты на рисунке 1.2(а) предполагает совершенную замещаемость производственных ресурсов, то есть, данный выпуск может быть получен с помощью либо только труда, либо только капитала, либо с помощью комбинации этих ресурсов.
Изокванта, представленная на рисунке 1.2(б) характерна для случая жесткой дополняемости ресурсов. В этом случае известен лишь один технически эффективный способ производства. Такую изокванту иногда называют изоквантой леонтьевского типа (см. далее), по имени экономиста В.В. Леонтьева, предложившего такой тип изокванты. На рисунке 1.2(в) показана ломаная изокванта, предполагающая наличие нескольких методов производства (P). При этом предельная норма технического замещения при движении вдоль изокванты сверху вниз убывает. Изокванта подобной конфигурации используется в линейном программировании – методе экономического анализа. Ломаная изокванта реалистично представляет производственные возможности современных производств. Наконец, на рисунке 1.2(г) представлена изокванта, предполагающая возможность непрерывной, но не совершенной замещаемости ресурсов.
K а) KQ2 б)
Q1
Q1 Q2
0 L 0 L
K P1 в) K г)
P2 Q2
Q2 Q1
Q1 P3
P4
0 L 0 L
Рисунок 1.2. Возможные конфигурации изоквант.
1.4. Эластичность производственной функции и отдача от масштаба.
Предельный продукт некоторого ресурса характеризует абсолютное изменение выпуска продукта, приходящегося на единицу изменения расхода данного ресурса, причем изменения предполагаются малыми. Для производственной функции предельный продукт i- того ресурса равен частной производной:
.
Влияние относительного изменения расхода i-того фактора на выпуск продукта, представленное также в относительной форме, характеризуется частной эластичностью выпуска по затратам этого продукта:
Для простоты будем обозначать . Частная эластичность производственной функции равна отношению предельного продукта данного ресурса к его среднему продукту.
Рассмотрим частный случай, когда эластичность производственной функции по некоторому аргументу – постоянная величина.
Если по отношению к исходным значениям аргументов x1 , x2 ,…,xn один из аргументов (i- тый) изменится в один раз, а остальные станутся на прежних уровнях, то изменение выпуска продукта описывается степенной функцией: . Полагая I=1, найдем, что A=f(x1 ,…,xn ), и поэтому
.
В общем случае, когда эластичность – переменная величина, равенство (1) является приближенным при значениях I, близких к единице, т.е. при I=1+e, и тем более точным, чем ближе e/к нулю.
Пусть теперь затраты всех ресурсов изменились в I раз. Последовательно применяя только что описанный прием к x1 , x2 ,…,xn , можно убедиться в том, что теперь
или
Сумма частных эластичностей некоторой функции по всем ее аргументам получила название полной эластичности функции. Вводя обозначение для полной эластичности производственной функции, мы можем представить полученный результат в виде
Равенство (2) показывает, что полная эластичность производственной функции позволяет дать отдаче от масштаба числовое выражение. Пусть расход всех ресурсов немного увеличился с сохранением всех пропорций (I>1). Если E>1, то выпуск продукции увеличился больше, чем в I раз (возрастающая отдача от масштаба), а если E<1, то меньше, чем в I раз. При E=1 выпуск продукции изменится в той же самой пропорции, что и затраты всех ресурсов (постоянная отдача).
Выделение короткого и длительного периодов при описании характеристик производства – грубая схематизация. Изменение объемов потребления различных ресурсов – энергии, материалов, рабочей силы, станков, зданий и т. д. – требует различного времени. Допустим, что ресурсы перенумерованы в порядке убывания подвижности: быстрее всего можно изменить x1 , а затем x2 и т. д., а изменение xn требует наибольшего времени. Можно выделить сверхкороткий, или нулевой период, когда не может измениться ни один фактор; 1-й период, когда изменяется только x1; 2-й период, допускающий изменение x1 и x2 и т.д.; наконец, длительный, или n-й период, в течении которого могут измениться объемы всех ресурсов. Различных периодов, таким образом, оказывается n+1.
Рассматривая некоторый промежуточный по величине, k-й период, мы можем говорить о соответствующей этому периоду отдачи от масштаба, имея в виду пропорциональное изменение объемов тех ресурсов, которые в этом периоде могут изменяться, т.е. x1 , x2 ,…, xk . Объемы xk +1 , xn , при этом сохраняют фиксированные значения. Соответствующий этому показатель отдачи от масштаба равен e1 +e2 +…+ek .
Удлиняя период, мы добавляем к этой сумме следующие слагаемые, пока не получится значение E для длительного периода.