Реферат: Производство бетона
Для экспериментального определения «удобоукладываемость» бетонной смеси было предложено множество способов. Наиболее распространены способ осадки конуса и способ вибростола. Первый способ заключается в следующем. Из бетонной смеси формуют образец в виде усеченного конуса определенных размеров. Строители используют для этого металлическую форму, которую заполняют бетонной смесью. За тем форму снимают, и остается т. н. «кулич». Освобожденная от формы бетонная смесь достаточно пластична, поэтому она оседает и несколько расплывается. Осадка «кулича» после снятия с него формы и служит оценкой подвижности (или удобоукладываемости) бетонной смеси. Например, конус из жесткой смеси практически не оседает, подвижные пластические смеси дают осадку в 8 – 12 см, литые – больше 12 см. Осадка конуса зависит от сцепления материалов в смеси и внутреннего ее трения. Опять новые физические понятия? Что же они означают? Каков их смысл? Вспомним механику.
Всякий предмет, лежащий на земле, в зависимости от своей массы создает определенное давление на землю. Чтобы его передвинуть, нужно приложить силу и тем большую, чем тяжелее предмет. Отношение между силой, приложенной горизонтально или параллельно плоскости перемещения предметов и массой предмета, называется коэффициентом трения. Такие же силы трения существуют между частицами бетонной смеси и между смесью и подставкой. Кроме того, бетонная смесь обладает некоторым сцеплением, т. е. внутренним сопротивлением деформацией смеси. Оно позволяет свежеприготовленному бетону удерживаться в вертикальном положении после снятия формы.
Другим способом оценки «удобоукладываемости» является испытание бетонной смеси на встряхивающемся столе.
Для этого усеченный конус бетонной смеси освобождают от формы, измеряют диаметр конуса и сообщают конусу определенное число встряхиваний. После этого измеряют увеличение диаметра расплывшегося конуса по отношению к начальному.
Хотя оба описанных способа и имеют недостатки, они все же дают возможность оценить удобоукладываемость бетона. Они позволяют также установить относительное количество энергии, необходимое для того, чтобы бетонная смесь деформировалась и уплотнялась. Поэтому эти методы широко применяются в строительной практике. И все же они не окончательно выявляют поведение бетонной смеси при ее укладке в формы. Ведь бетонная смесь ведет себя в экспериментальном конусе и форме по-разному!
РЕОЛОГИЯ ПОМОГАЕТ РАСКРЫТЬ ТАЙНУ
Что же происходит при укладке бетонной смеси в форму? Отчего зависит расплыв конуса? От пластической деформации или разъединения частиц в поперечном направлении? Эти явления наблюдаются в одной и той же бетонной смеси при различном количестве воды... Неясны причины большей или меньшей хрупкости бетонной смеси. Бетонная смесь упорно хранит тайны своего поведения при укладке в формы.
Попытки разгадать эту тайну с помощью старых методов исследования кончались неудачами. Нужен был новый подход, новый критерий. И на помощь пришла физика, а точнее один из ее разделов – реология. Только она смогла четко определить физическую сущность удобоукладываемости.
Итак, реология! Чем же она занимается? Это совершенно новое направление в механике. Оно связано с развитием теории упругости. Она изучает поведение под нагрузкой влажных материалов, которые нельзя отнести ни к твердому телу, ни к жидкости. К таким материалам относится и бетонная смесь, представляющая собой так называемую упруго-вязкую среду. Чтобы установить, как деформируется материал под нагрузкой, механики используют структурные механические модели. Они позволяют имитировать внутреннюю структуру материала.
Как работает структурная модель? Допустим, к твердому телу приложена нагрузка. Под ее воздействием в теле возникает деформация. Это значит, что тело будет деформироваться пропорционально приложенной нагрузке (или закону пропорциональности напряжений и деформаций Гука). Как только нагрузка будет снята, тело восстановит свою первоначальную форму.
А как будет, если мы имеем дело с материалами, которые имеют сложные свойства и, кроме упругих характеристик, имеют еще и неупругие? Здесь структурные механические модели уже непригодны. Она не позволяют точно имитировать внутреннюю структуру таких материалов.
Для этой цели потребуются другие механические модели, которые носят название реологических. Они отличаются тем, что состоят из комбинаций двух элементов, которые имитируют два основных свойства твердого тела: упругость и вязкость. Самое простое тело – упругое. Зависимость деформации и напряжений для него выражается одной кривой для процессов нагружения и разгрузки. Достаточно снять нагрузку и возникающие деформации полностью исчезают. Ну, а в идеально вязком теле? Ведь наличие вязкости материала приводит к остаточным деформациям, которые безгранично возрастают при уменьшении скорости нагружения. Для идеально вязкого элемента применим закон деформации вязкой жидкости.
Для создания реологической модели пружину и «амортизатор» (модель упруго-вязкой деформации) можно комбинировать между собой последовательно или параллельно. Такие комбинации позволяют наилучшим образом имитировать механические свойства любых реальных материалов.
Реологические модели позволяют получить необходимую информацию об изменениях внутренней структуры реального тела под нагрузкой. К этой информации относятся характеристики внутреннего трения, вязкости и адгезии (сцепления).
Какова же реологическая модель бетонной смеси? Бетонная смесь является так называемым двухфазным материалом. Это значит, что она содержит в себе элементы двух фаз – твердой и жидкой. А если так, то как лучше отразить внутреннюю структуру бетонной смеси?
Проведем некоторый анализ. Начнем с внутреннего трения. Это одна из важных характеристик упруго-вязкого тела. Внутреннее трение характеризует твердую фазу материала. Если же в материале внутреннее трение равно нулю, то его можно считать идеальной жидкостью. Бетонная смесь обладает внутренним трением. Казалось бы, по этому признаку ее можно отнести к твердому телу. Однако присутствие в ней воды делает ее все же промежуточным материалом между жидкостью и твердым телом. А если это так, то в реологической модели бетонной смеси должны участвовать как упругие, так и неупругие элементы.
Значит, реологическая модель бетонной смеси будет представлять собой «пружинящую» сплошную структуру, поры которой будут заполнены вязкой жидкостью (цементным тестом). Наконец, последний вопрос. Как должны быть соединены между собой элементы? Так как бетонная смесь – это двухфазный материал, то лучшей имитацией ее будет комбинация обоих элементов. Как будет имитировать реологическая модель бетонную смесь в процессе затвердевания? Пока бетонная смесь еще не затвердела, она представляет собой вязкую жидкость. В этой стадии в ней преобладает жидкая фаза. Но вот цементное тесто начинает твердеть. По мере нарастания прочности вязкость смеси уменьшается, зато возрастает упругость, а вместе с ней и внутреннее трение. А раз появилось внутреннее трение, то это уже признак твердой фазы материала. Теперь создадим нагрузку. Под влиянием нагрузки в реологической модели будут происходить как обратимые, так и необратимые процессы, вызывающие соответствующие деформации. Под влиянием нагрузки какая-то часть механической энергии, воздействующей на бетонную смесь, будет превращаться в тепло. Это – следствие внутреннего трения. Тепло будет создаваться в пружинах, которые при сжатии будут нагреваться. Это тепло они будут выделять в окружающую среду. Что касается амортизатора, то в нем возникнут необратимые деформации. Под нагрузкой в результате вязкого трения амортизаторы будут также нагревать вязкую жидкость. Таким образом, характеристики бетонной смеси зависят от того, в какой фазе находится бетонная смесь.
Что же мы выяснили благодаря реологическим моделям? Во-первых, что поведение бетонной смеси зависит от таких упруго-вязких характеристик, как внутреннее трение, сцепление и работа разрушения при сдвиге. Эти физические характеристики расшифровывают понятие «удобоукладываемости». Во-вторых, мы установили, что заполнители и цементное тесто, входящее в состав бетонной смеси, как правило, находятся на границе упруго-вязких и пластичных фаз. Поэтому различные соотношения заполнителя и цемента будут сказываться на свойствах различных бетонных смесей. В-третьих, мы получили возможность определять все физические характеристики бетонной смеси.
Например, внутреннее трение бетонной смеси можно определить по коэффициенту внутреннего трения. Оказалось, что для заполнителей, полученных дроблением, его значение больше, чем для заполнителей округлой формы. При повышении содержания раствора и увеличении количества воды затворения он уменьшается. Вязкость бетонной смеси прямо пропорциональна коэффициенту внутреннего трения и зависит от содержания воды.
Знание физических характеристик бетонной смеси расширяет смысл термина «удобоукладываемость». Реологические свойства бетонной смеси, характеризующие удобоукладываемость, дополнили это понятие. Они дали возможность представить себе весь механизм укладки бетонной смеси.
ЗАЧЕМ ПОНАДОБИЛОСЬ ВИБРИРОВАТЬ БЕТОННУЮ СМЕСЬ?
От качества укладки бетона во многом зависит его прочность, а значит и долговечность сооружения. Качество же укладки, в свою очередь, зависит от удобоукладываемости бетонной смеси. А удобоукладываемость регулируется количеством воды в бетонной смеси и внутренним трением. Чтобы не вводить в смесь избыток воды, надо было разжижить смесь в момент укладки. Из многих предложенных способов наиболее эффективным оказалось вибрирование, уничтожающее внутреннее трение бетонной смеси.
Как же вибрация уничтожает внутреннее трение бетонной смеси? Чтобы понять это, проделаем такой эксперимент. Поставим на стол куб, изготовленный из бетона. Чтобы заставить этот куб скользить по поверхности стола, нужно приложить к нему такую силу, чтобы отношение ее к массе куба превысило коэффициент трения куба о поверхность стола. Если же этот стол вместе с бетонным кубом поставить на виброплощадку и сообщить ему импульсы – толчки, то куб начнет скользить по столу. Ведь сцепление куба с поверхностью стола при встряхивании ослабляется, значит, уменьшается коэффициент трения. Итак,