Реферат: Производство серной кислоты из серы
Башенная кислота: С=75%, tкрист = -29,5*С
Контактная кислота: С=92,5%, tкрист = -22,0*С
Олеум: С=20% своб. SO3 , tкрист = +2*С
Схема применения серной кислоты
Исходное сырье.
Традиционно основными источниками сырья являются сера и железный (серный) колчедан. Около половины серной кислоты в СССР получали из серы, треть – из колчедана. Значительное место в сырьевом балансе занимают отходящие газы цветной металлургии, содержащие диоксид серы.
В целях защиты окружающей среды во всем мире принимаются меры по использованию отходов промышленности, содержащих серу. В атмосферу с отходящими газами тепловых электростанций и металлургических заводов выбрасывается диоксида серы значительно больше, чем употребляется для производства серной кислоты. Из-за низкой концентрации SO2 в таких отходящих газах их переработка пока еще не всегда осуществима.
В то же время отходящие газы – наиболее дешевое сырье, низки оптовые цены и на колчедан, наиболее же дорогостоящим сырьем является сера. Следовательно, для того чтобы производство серной кислоты из серы было экономически целесообразно, должна быть разработана схема, в которой стоимость ее переработки будет существенно ниже стоимости переработки колчедана или отходящих газов.
Характеристика целевого продукта.
Серная кислота может существовать как самостоятельное химическое соединение H2 SO4 , а также в виде соединений с водой H2 SO4 *2H2 O, H2 SO4 *H2 O, H2 SO4 *4H2 O и с триоксидом серы H2 SO4 *SO3 , H2 SO4 *2SO3 .
В технике серной кислотой называют и безводную H2 SO4 и ее водные растворы (по сути дела, это смесь H2 O, SO2 и соединений H2 SO4 *nH2 O) и растворы триоксида серы в безводной H2 SO4 – олеум (смесь H2 SO4 и соединенийH2 SO4 *nSO3 ).
Безводная серная кислота – тяжелая маслянистая бесцветная жидкость, смешивающаяся с водой и триоксидом серы в любом соотношении. Физические свойства серной кислоты, такие, как плотность, температура кристаллизации, температура кипения, зависят от ее состава.
Безводная 100%-ная кислота имеет сравнительно высокую температуру кристаллизации 10,7 *С. Чтобы уменьшить возможность замерзания товарного продукта при перевозке и хранении, концентрацию технической серной кислоты выбирают такой, чтобы она имела достаточно низкую температуру кристаллизации. Промышленность выпускает три вида товарной серной кислоты.
Концентрация | Температура кристаллизации, *С | |
Башенная кислота | 75% | -29*C |
Контактная кислота | 92,5% | -22*C |
Олеум | 20% своб.SO3 | +2*C |
Серная кислота и вода образуют азеотропную смесь состава 98,3% H2 SO4 и 1,7% H2 O с максимальной температурой кипения (336,5*С). Состав находящихся в равновесии жидкой и паровой фаз для кислоты азеотропной концентрации одинаков; у более разбавленных растворов кислоты в паровой фазе преобладают пары воды, в паровой фазе над олеумом высока равновесная концентрация SO3 .
Серная кислота весьма активна. Она растворяет оксиды металлов и большинство чистых металлов, вытесняет при повышенной температуре все другие кислоты из солей. Особенно жадно серная кислота соединяется с водой благодаря способности давать гидраты. Она отнимает воду у других кислот, от кристаллогидратов солей и даже кислородных производных углеводородов, которые содержат не воду как таковую, а водород и кислород в сочетании Н:О=2. Дерево и другие растительные и животные ткани, содержащие целлюлозу (С6 Н10 О5 ), крахмал и сахар, разрушаются в концентрированной серной кислоте; вода связывается с кислотой и от ткани остается лишь мелкодисперсный углерод. В разбавленной кислоте целлюлоза и крахмал распадаются с образованием сахаров. При попадании на кожу человека концентрированная серная кислота вызывает ожоги.
Химическая схема процесса
1.Сжигание серы.
При получении обжигового газа путем сжигания серы отпадает необходимость очистки от примесей. Стадия подготовки будет включать лишь осушку газа и утилизацию кислоты. При сжигании серы протекает необратимая экзотермическая реакция:
S + O2 = SO2 (1)
с выделением очень большого количества теплоты: изменение Н= -362,4 кДж/моль, или в пересчете на единицу массы 362,4/32=11,325 кДж/т = 11325 кДж/кг S.
Расплавленная жидкая сера, подаваемая на сжигание, испаряется (кипит) при температуре 444,6 *С; теплота испарения составляет 288 кДж/кг. Как видно из приведенных данных, теплоты реакции горения серы вполне достаточно для испарения исходного сырья, поэтому взаимодействие серы и кислорода происходит в газовой фазе (гомогенная реакция).
Сжигание серы в промышленности проводят следующим образом. Серу предварительно расплавляют (для этого можно использовать водяной пар, полученный при утилизации теплоты основной реакции горения серы). Так как температура плавления серы сравнительно низка, то путем отстаивания и последующей фильтрации от серы легко отделить механические примеси, не перешедшие в жидкую фазу, и получить исходное сырье достаточной степени чистоты. Для сжигания расплавленной серы используют два типа печей – форсуночные и циклонные. В них необходимо предусмотреть распыление жидкой серы для ее быстрого испарения и обеспечения надежного контакта с воздухом во всех частях аппарата.
Из печи обжиговый газ поступает в котел-утилизатор и далее в последующие аппараты.
Концентрация диоксида серы в обжиговом газе зависит от соотношения серы и воздуха, подаваемых на сжигание. Если воздух берут в стехиометрическом количестве, т.е. на каждый моль серы 1 моль кислорода, то при полном сгорании серы концентрация будет равна объемной доле кислорода в воздухе Сso2.max =21%. Однако обычно воздух берут в избытке, так как в противном случае в печи будет слишком высокая температура.
При адиабатическом сжигании серы температура обжига для реакционной смеси стехиометрического состава составит ~ 1500*С. В практических условиях возможности повышения температуры в печи ограничены тем, что выше 1300*С быстро разрушается футеровка печи и газоходов. Обычно при сжигании серы получают обжиговый газ, содержащий 13 – 14% SO2 .
2. Контактное окисление SO2 в SO3
Контактное окисление диоксида серы является типичным примером гетерогенного окислительного экзотермического катализа.
Это один из наиболее изученных каталитических синтезов. В СССР наиболее основательные работы по изучению окисления SO2 в SO3 и разработке катализаторов были проведены Г.К. Боресковым.Реакция окисления диоксида серы
SO2 + 0,5 O2 = SO3 (2)
характеризуется очень высоким значением энергии активации и поэтому практическое ее осуществление возможно лишь в присутствии катализатора.
В промышленности основным катализатором окисления SO2 является катализатор на основе оксида ванадия V2 O5 (ванадиевая контактная масса). Кталитическая активность в этой реакции проявляют и другие соединения, прежде всего платина. Однако, платиновые катализаторы чрезвычайно чувствительны даже к следам мышьяка, селена, хлора и других примесей и поэтому постепенно были вытеснены ванадиевым катализатором.
Скорость реакции повышается с ростом концентрации кислорода, поэтому процесс в промышленности проводят при его избытке.
Так как реакция окисления SO2 относится к типу экзотермических, температурный режим ее проведения должен приближаться к линии оптимальных температур. На выбор температурного режима дополнительно накладываются два ограничения, связанные со свойствами катализатора. Нижним температурным пределом является температура зажигания ванадиевых катализаторов, составляющая в зависимости от конкретного вида катализатора и состава газа 400 – 440*С. верхний температурный предел составляет 600 – 650*С и определяется тем, что выше этих температур происходит перестройка структуры катализатора, и он теряет свою активность.
В диапазоне 400 – 600*С процесс стремятся провести так, чтобы по мере увеличения степени превращения температура уменьшалась.
Чаще всего в промышленности используют полочные контактные аппараты с наружным теплообменом. Схема теплообмена предполагает максимальное использование теплоты реакции для подогрева исходного газа и одновременное охлаждение газа между полками.
Одна из важнейших задач, стоящих перед сернокислотной промышленностью, - увеличение степени превращения диоксида серы и снижение его выбросов в атмосферу. Эта задача может быть решена несколькими методами.