Реферат: Просветление тумана в электрическом поле
(5)
Теперь представим, что в точке A находится такая же капля, и найдем силу, с какой поле, создаваемое нашей каплей, действует на эту каплю. Поскольку вторая капля - это тоже диполь с диаметром 2r и с зарядами +Q и -Q , то сила, действующая на вторую каплю, как видно из формулы (5) будет равна:
(6),
где R - расстояние между центрами капель.
Определим режим движения капель. Для этого надо посчитать число Рейнольдса. Как известно: , где
D - характерный размер, v - скорость тела, - коэффициент кинематической вязкости среды.
Найдем число Рейнольдса для движения капли в воздухе:
.
При таком числе Рейнольндса во время движения на каплю действует сила сопротивления воздуха, которая вычисляется по формуле Стокса:
(7),
где - динамическая вязкость среды .
Из формулы (6) видно , что сила притяжения капли обратно пропорциональна четвертой степени расстояния между каплями. Поэтому скорость капли так же возрастает по мере приближения к другой капле, и поэтому можно оценить скорость снизу, приравняв силу (6) к силе сопротивления (7):
(8)
Поэтому время сближения двух капель будет примерно равно:
(9)
Попробуем сделать оценку для времени сближения капель. При характерных величинах:
, , , .
Из формулы (2) видно, что среднее время сближения двух капель зависит от отношения R/r, а если считать , что капли сливаются попарно, то с каждым таким сливанием R и r будут изменяться в одинаковое количество раз, и, следовательно время их сближения будет оставаться тем же. Отсюда следует, что при таких характерных условиях, туман может рассеиваться за счет влияния однородного электрического поля.
Экспериментальная установка.
Наша экспериментальная установка способна выполнять три функции: создавать туман, генерировать электрическое поле для его рассеивания и измерять прозрачность тумана, т.е. фиксировать скорость его рассеивания во время эксперимента. В первой части установки туман создается с помощью азота и воды способом, который описан в начале доклада. Вторая часть установки состоит из двух горизонтально расположенных металлических пластин, на которые подано высокое напряжение от высоковольтного источника. В нижнюю пластину вмонтирован светодиод, который испускает световые импульсы с частотой порядка 10 килогерц. В верхнюю пластину вмонтирован световод с фотодиодом. Фотодиод подключен к анализатору спектра, который настроен на ту же частоту, что и генератор сигналов низкой частоты. Анализатор спектра показывает зависимость напряжения на фотодиоде (прозрачности) от времени.
На графике 1 представлены результаты серии экспериментов по наблюдению над рассеиванием тумана при электрическом поле в 3500 В/см. Можно заметить различие между скоростью просветления тумана естественным путем и скоростью его рассеивания в электрическом поле, т.е. установить влияние электрического поля на рассеивание тумана. После этих экспериментов, предстояло выяснить, из-за чего происходит рассеивание тумана: из-за диполь-дипольного взаимодействия капель или же из-за неоднородности электрического поля краев пластин.
Для этого верхняя пластина была заменена на тонкий диск из бронзы с диаметром 0,3 мм с более острыми краями и была проведена серия экспериментов с этими пластинами. Результаты этих экспериментов представлены на графике 2. При таких пластинах если в 2 раза понизить напряжение, подаваемое на пластины, то напряженность однородного поля пластин уменьшится в два раза, а время сближения капель, как видно из формулы (2) увеличится в 4 раза, поэтому влияние однородного поля пластин сильно уменьшится. Можно будет видеть, какое электрическое поле больше влияет на просветление тумана: однородное поле пластин или неоднородное поле краев.
Из графиков 1 и 2 видно, что скорость просветления тумана в обоих экспериментах практически одинакова, а так как во втором эксперименте влияние однородного поля пластин было намного меньше, мы можем сделать вывод, что неоднородное поле краев влияет на рассеивание больше, чем однородное поле пластин. Таким образом, можно сделать вывод, что при условиях, в которых проводились эксперименты, влияние однородного электрического поля незначительно по сравнению с неоднородным полем.
График 1. Напряженность 3500 В/см График 2. Напряженность 1700 В/см
Список литературы
[ 1 ] Н.С. Шишкин " Облака, осадки и грозовое электричество ", М.: Государственное издательство технико-теоретической литературы - 1954 г.
[ 2 ] Л.Г. Качурин " Физические основы воздействия на атмосферные процессы ", Л.: Гидрометеоиздат - 1990 г.
[ 3 ] В.М. Мучник " Физика грозы " , Л.: Гидрометеоиздат - 1974 г.