Реферат: Противостояние организма изменениям барических и термических условий
По-иному влияют на организм высокие давления, и иначе происходит приспособление организма к ним. В условиях высокого гидростатического давления главным повреждающим фактором является само давление. Правда, в глубоких водах снижено содержание кислорода, и к этому глубоководные животные должны быть приспособлены. Но по сравнению с эффектом колоссальных давлений влияние этого фактора сравнительно невелико. Конечно, внешнему давлению, которое испытывают глубоководные животные, противостоит такое же по величине внутреннее давление, что препятствует их деформации, расплющиванию. Однако сам факт большого давления остается, а высокие давления повреждают четвертичные и третичные структуры клеточных белков, образованные водородными и ионными связями, и таким образом влияют на скорость химических реакций.
Многие структурные и ферментные белки содержат две или более субъединиц, соединенных между собой иековалентными связями. Например, лактат-дегидрогеназа, отнимающая от молочной кислоты водород, и киназа фосфорилазы, превращающая малоактивную фосфорилазу b в высокоактивную фосфорилазу а, состоят каждая из четырёх субъединиц. Расщепление фермента на субъединицы лишает его активности или резко снижает ее. Из субъединиц построены и сократительные белки мышц – миозин и актин: первый – из пяти субъединиц, а второй – из очень большого числа глобулярных молекул G-актина. Расщепление этих сложных структур высоким давлением и препятствие сборке субъединиц G-актина в фибриллярный F-актин делает невозможным взаимодействие между этими белками и мышечное сокращение. Установлено также, что давление 101 100 кПа, соответствующее глубине 10 км, лишает актомиозин мышц корюшки его ферментативной активности, способности трансформировать химическую энергию АТФ в механическую энергию мышечного сокращения, а у карпа снижает ее на 50%, затрудняет высокое давление и дерепрессию генов, полимеризацию РНК, сборку рибосом в полирибосомы, а следовательно, и синтез белков. Наконец, высокое давление изменяет структуры клеточных мембран и уменьшает их проницаемость.
Влияние высокого давления на скорость биохимических реакций зависит от характера изменения объемов реагирующих веществ в ходе реакции. Если у фермент-субстратного комплекса или конечного продукта больший объем, чем у исходных веществ, то давление ингибирует такую реакцию, а если объем в ходе реакции уменьшается, то активирует ее. Изменения объемов зависят не только от структуры и величины молекул и комплексов, образующихся в процессе реакции, но и от взаимодействия их с молекулами внутриклеточной воды, которые могут вступать в физико-химическую связь и с ферментом, и с фермент-субстратным комплексом, и с продуктом реакции, гидратируя их. Степень гидратации, а значит, и изменение объема зависят от ряда условий: электрического заряда молекул, количества неорганических ионов, рН среды и т.д. Естественно, что все эти обстоятельства не могут не влиять положительно или отрицательно на скорость и направление реакций обмена веществ.
Мы не будем касаться морфологической стороны приспособления – особенностей форм и строения глубоководных организмов, так как молекулярная основа этого неизвестна. Да и для выяснения молекулярных основ адаптации организмов к высоким давлениям сделано еще не так много. Прежде всего установлено различие между свойствами белков глубоководных организмов и животных, совершающих значительные вертикальные миграции под водой: у первых белки сохраняют свои высшие структуры, а ферменты оптимально работают только при больших давлениях, к которым они нечувствительны, но претерпевают существенные изменения при понижении давления; у вторых белки не реагируют на большие перепады давления. Чем обусловлены эти свойства, мы пока не знаем. Возможно, что они зависят от особенностей высших структур белков и от каких-то условий внутриклеточной среды, способствующих сохранению этих структур и благоприятному изменению объемов компонентов различных биохимических реакций. Тут может играть роль присоединение к белку каких-то веществ, снимающих ингибирующее влияние высоких давлений. Так, фруктозодифосфат снимает ингибирующее влияние давления на чувствительный к нему фермент – пируваткиназу.
Вторая возможность приспособления обмена веществ к высоким давлениям – выбор альтернативных путей биохимических превращений. Нередко в организме за один и тот же субстрат конкурируют несколько ферментов, направляющих его по разным путям в зависимости от концентрации субстрата, условий среды и т.д. Примером может служить судьба промежуточного продукта гликолиза – глюкозо-6-фосфата, который образуется в результате фосфорилирования глюкозы. Далее превращения его могут идти по одному из четырех путей: он может подвергаться гликолизу до молочной кислоты; окисляться в фосфоглюконат и участвовать в образовании пентоз; использоваться для синтеза гликогена; расщепляться на глюкозу и фосфорную кислоту. Выбор пути зависит от того, какая из четырех реакций наименее связана с давлением. Однако этот вопрос требует дальнейших исследований.
Большую опасность для обитателей глубин представляет перемещение по вертикали. Почти все глубоководные животные при поднятии их на поверхность в тралах оказываются мертвыми. У рыб при этом пищевод выпячивается изо рта, а кишечник – из анального отверстия, глаза выходят из орбит, чешуя отстает и отпадает. Но есть ряд животных, хорошо переносящих такие перемещения, например поднимающиеся на поверхность и быстро ныряющие в глубину акулы, макрели и живущие придонно ракообразные. Известный исследователь морских глубин В. Биб привязывал омара снаружи своей батисферы, подвергая его при погружении разности давлений 10 110 кПа, и омар возвращался живым и неповрежденным. Вообще омары, лангусты и креветки, извлекаемые на поверхность моря, всегда остаются живыми и активными. Что лежит в основе такой адаптации, мы еще не знаем. У рыб же, резко меняющих глубину пребывания, одной из приспособительных особенностей является отсутствие плавательного пузыря, заполненного воздухом, объем которого при быстром поднятии резко расширяется.
Приспособление к температуре среды
Для защиты от температурного фактора в строении многих животных имеются специальные приспособления. Так, у ряда насекомых хорошую термоизоляцию обеспечивает густой покров волосков на грудном отделе: между волосками находится слой неподвижного воздуха, уменьшающий теплоотдачу. Тунцы могут поддерживать температуру своих мышц на 8 – 10 0 Cвыше температуры воды благодаря наличию особых теплообменников – тесного переплетения артериальных и венозных капилляров, на которые распадаются идущие от жабр артерии и от мышц к жабрам вены. Первые несут кровь, охлажденную водой, вторые – согретую работающими мышцами. В теплообменнике венозная кровь отдает тепло артериальной, что способствует сохранению более высокой температуры в мышцах. У водных млекопитающих термоизоляцией служит толстый слой подкожного жира, а у белого медведя, кроме того, и непромокаемая до кожи шерсть. У водоплавающих птиц ту же роль играют перья, покрытые жироподобной смазкой.
О том, как велико значение этой смазки, рассказывает в своих воспоминаниях крупный немецкий зоолог и основатель всемирно известного Гамбургского зоологического сада К. Гакенбек. Он с детства увлекался животными. Однажды отец подарил ему несколько диких уток с подрезанными крыльями, поэтому они улететь не могли. И маленький Карл пустил их плавать в металлический бак. Но бак оказался из-под мазута, в котором утки вымазались с ног до головы. Увидев такой непорядок, мальчик тщательнейшим образом вымыл уток теплой водой с мылом и пустил их плавать в другой, чистый бак. На следующее утро все утки лежали мертвыми на дне: теплая вода и мыло удалили не только мазут, но и всю жировую смазку, в результате чего утки переохладились и погибли.
Мы уже знаем, что гомойотермные животные могут поддерживать температуру тела в гораздо большем диапазоне температур, чем пойкилотермные, однако те и другие гибнут при примерно одинаковых чрезмерно высоких или чрезмерно низких температурах. Но пока этого не произошло, пока температура не достигла критических значений, организм борется за поддержание ее па нормальном или хотя бы на близком к нормальному уровне. Естественно, что в полной мере это свойственно гомойотермным организмам, обладающим терморегуляцией, способным в зависимости от условий усиливать или ослаблять как теплопродукцию, так и теплоотдачу. Теплоотдача – процесс чисто физиологический, он происходит на органном и организменном уровнях, а в основе теплопродукции лежат и физиологические, и химические, и молекулярные механизмы. Прежде всего это озноб, холодовая дрожь, т.е. мелкие сокращения скелетных мышц с низким коэффициентом полезного действия и повышенным образованием тепла. Этот механизм организм включает автоматически, рефлекторно. Эффект его может быть повышен активной произвольной мышечной деятельностью, также усиливающей теплообразование. Не случайно, чтобы согреться, мы прибегаем к движению.
У гомойотермных существует возможность образования тепла и без сокращения мышц. Происходит это в основном в мышцах, а также в печени и других органах следующим образом. При транспорте электронов и протонов по дыхательной цепи энергия окисляемых веществ не рассеивается в виде тепла, а улавливается в форме образующихся макроэрги-ческих соединений, обеспечивающих ресинтез АТФ. Эффективность этого процесса, открытого выдающимся биохимиком В.А. Энгельгардтом и получившего название дыхательного фосфорилирования, измеряется коэффициентом Р/О, показывающим, сколько атомов фосфора было включено в АТФ на каждый атом использованного митохондриями кислорода. В обычных условиях в зависимости от того, какое вещество окисляется, этот коэффициент разен двум или трем. При охлаждении организма окисление и фосфорилирование частично разобщаются. Та пли иная часть окисляемых веществ вступает на путь «свободного» окисления, в результате чего уменьшается образование АТФ и повышается выделение тепла. При этом, естественно, коэффициент Р/О понижается. Разобщение это достигается действием гормона щитовидной железы и свободными жирными кислотами, в повышенных количествах поступающими в кровь и приносимыми ею к мышцам и другим органам. При увеличении внешней температуры, наоборот, сопряжение окисления и фосфорилирования усиливается, а теплопродукция снижается.
Кроме мышц и печени, для которых теплообразование служит не основной, а побочной функцией, в организме млекопитающих животных есть и специальный орган теплопродукции – бурая жировая ткань. Она располагается около сердца и по пути крови к жизненно важным органам: сердцу, мозгу, почкам. Клетки ее исключительно богаты митохондриями, и в них очень интенсивно идет окисление жирных кислот. Но оно не сопряжено с фосфорилированием АДФ, а энергия окисляемых веществ выделяется у них 'в виде тепла. Усилителем окислительных процессов в бурой жировой ткани является адреналин, а разобщителем дыхания и фосфорилирования – образующиеся в ней в больших количествах жирные кислоты.
Интересный механизм поддержания температуры мышц был недавно открыт у шмелей известным английским биохимиком Э. Ньюсхолмом. У всех животных образующийся в процессе гликолиза фруктозофосфат, присоединяя от АТФ еще одну частицу фосфорной кислоты, превращается во фруктозодифосфат, который направляется далее на путь анаэробного окисления. У шмелей же он расщепляется на фруктозо-6-фосфат и фосфорную кислоту с выделением тепла: Ф-6-Ф + АТФ -> – ФДФ + АДФ; ФДФ -> Ф-6-Ф + К3РО4 – f – тепло, что в сумме дает реакцию АТФ –>-АДФ -\~ Н3РО4 + тепло. Дело в том, что в противоположность другим животным у шмелей фруктозодифосфа-таза не угнетается продуктами расщепления АТФ. В результате шмели достигают разности температур между мышцами и окружающей средой порядка 8–20 °С, что позволяет им активно передвигаться и кормиться в прохладную погоду, неблагоприятную для других насекомых.
В экстренном приспособлении к изменениям температурного режима у гомойотермных важную роль играют и гормоны. В условиях низких температур в кровь выбрасывается повышенное количество адреналина, стимулирующего мобилизацию глюкозы и жирных кислот и интенсивность окислительных процессов. В крови происходит освобождение глюкокортикоидов от связи с белками, а затем и новое поступление их в кровь из коры надпочечников. Они повышают чувствительность периферических адренорецепторов, усиливая тем действие адреналина. Активируется деятельность щитовидной железы, гормоны которой вызывают частичное разобщение дыхания и фосфорилирования в митохондриях мышц и печени, увеличивая теплообразование. При действии высоких температур интенсивность окислительных процессов и теплообразование снижаются, возрастает теплоотдача. Но все это хорошо для экстренного, кратковременного приспособления организма и было бы даже вредным для него при длительном изменении температурных условий. Действительно, если бы животные, обитающие в области низких температур, защищались от них, например, только холо-довой дрожью, неизвестно, как они могли бы вести активную жизнь, добывать пищу, спасаться от врагов и т.п. Значит, при длительной адаптации к той или иной температуре приспособительные механизмы должны быть иными: обеспечивать нормальное существование организма в этих условиях.
Для того чтобы произошла химическая реакция, должны возникнуть напряжение или деформация и ослабление связей в молекулах реагирующих веществ. Необходимую для этого энергию называют энергией активации. Повышение температуры на 10 0 C увеличивает скорость реакции в 2–3 раза за счет возрастания числа активированных молекул. При понижении температуры наблюдаются изменения обратного порядка. Если бы организм строго следовал этому закону, то при изменении температуры среды он оказался бы в весьма трудном положении: низкие температуры настолько замедлили бы реакции обмена веществ, что жизненные функции не могли бы протекать нормально, а при высоких температурах они чрезмерно ускорились бы. На деле же мы видим совсем другое. Так, у рыб, приспособленных к высоким и низким температурам, различия в интенсивности обмена веществ не очень велики и вполне соизмеримы. Иначе говоря, реакции обмена веществ у этих видов имеют разный температурный оптимум. Например, у енотовидной собаки интенсивность обмена веществ наиболее низка при 15 °С, а в обе стороны от этой точки она возрастает. Температура же тела в амплитуде 35 0 Cсохраняется почти постоянной. А это значит, что температурные условия протекания реакций обмена веществ в этом диапазоне сохраняются оптимальными. При сопоставлении двух близких видов животных, но обитающих в разных условиях, мы видим, что у песца постоянство интенсивности обмена веществ и температуры тела в большом диапазоне температур среды намного лучше выражено, чем у лисы. Что интересно: интенсивность обмена веществ при понижении окружающей температуры не уменьшается, а сохраняется на постоянном уровне или повышается, тогда как, согласно химическим законам, должно было бы быть наоборот. Такая возможность открылась перед живыми организмами потому, что все реакции обмена веществ ферментативны. А суть действия ферментов в том, что они резко снижают энергию активации реагирующих молекул. Кроме того, в зависимости от условий среды они могут изменять ряд своих свойств: каталитическую активность, оптимум температуры и кислотности, степень сродства к субстрату. Поэтому причины способности организма «уклоняться» от химических законов следует искать в изменениях ферментных белков.
Изменения эти в связи с приспособлением к температурному фактору могут идти по трем путям: увеличивать или уменьшать число молекул данного фермента в клетке, изменять набор ферментов в ней, а также свойства и активность ферментов. Первый путь имеет свои резоны. Ведь любая молекула фермента в каждый данный момент может взаимодействовать с одной молекулой субстрата. Поэтому, чем больше молекул фермента в клетке, тем значительнее будет выход продуктов реакции, а чем меньшим оно будет, тем ниже и выход. Это в какой-то мере может компенсировать температурное снижение или повышение интенсивности обмена веществ. Но эта компенсация ограничивается и возможностью синтеза ферментов, и пространственными соображениями. Клетка те может вместить слишком большое количество новых макромолекул ферментов. Тем не менее имеются уже твердо установленные данные, что при приспособлении к холоду возрастают активность и содержание в мышцах таких важнейших ферментов аэробного окисления, как сукцинатдегидрогеназа и цитохром-оксидаза.
Несомненно, что более эффективен второй путь