Реферат: Процесс фотосинтеза

Генетические различия. Имеется много примеров генетических различий в интенсивности фотосинтеза. Например, обнаружены, большие различия в фото синтетической способности двух клонов лиственницы европейской. Установлено, что сеянцы дугласии по происхождению с острова Ванкувер имели при определенной температуре более высокую интенсивность фотосинтеза, чем сеянцы, происходящие из Монтаны. Однако иногда варьирование среди сеянцев одного и того же географического происхождения было большим, чем различия между сеянцами из двух источников Люк-канен и Козловский (1972) обнаружили большие различия между клонами тополя по интенсивности фотосинтеза, фотодыхания и химического (темнового) дыхания на единицу листовой поверхности и по компенсационной точке СО2 , Представители секции Aigeiros имели более низкую интенсивность фотосинтеза и более высокие компенсационные точки, чем представители секции Tacamahaca.

Различия фотосинтетической способности, наблюдаемые среди генетического материала, могут быть результатом анатомических или биохимических особенностей или тех и других одновременно. Часто изменения признаков, характеризующих устьица, являются причиной различий в поглощении СО2 .

Большой интерес лесных генетиков вызывает использование интенсивности фотосинтеза в качестве показателя потенциального роста деревьев. Однако между фотосинтетической способностью и ростом деревьев установлена как высокая, так и низкая и даже отрицательная корреляция. Имеются сообщения о положительной корреляции между интенсивностью фотосинтеза и ростом у тополя, у гибрида осины и тополя, у сеянцев дугласии. Некоторые исследователи обнаружили даже обратные отношения между фотосинтезом и потенциальным ростом. Например, установлено, что интенсивность фотосинтеза и рост сеянцев сосны обыкновенной зависят от происхождения семян. Однако отмечено, что у наиболее хорошо росших сеянцев была самая низкая интенсивность фотосинтеза в расчете на сухую массу листьев. У быстрорастущих сеянцев фотосинтетически активной была меньшая часть общей массы хвои. Это обусловлено более сильным взаимным затенением хвои у быстрорастущих растений или, что более вероятно, анатомическими или биохимическими различиями хвои, связанными с происхождением семян.

По мнению некоторых исследователей, кратковременные измерения фотосинтетической способности не всегда являются надежными для оценки потенциального роста, потому что его детерминируют наряду с интенсивностью фотосинтеза, по меньшей мере, еще три важные физиологические обстоятельства. Сюда входят продолжительность роста или характер сезонных изменений фотосинтеза, отношение фотосинтеза к дыханию и распределение продуктов фотосинтеза внутри дерева.

Так, у горного экотипа сосны обыкновенной с апреля по август выявлена более высокая интенсивность фотосинтеза, чем у двух долинных экотипов. Затем интенсивность фотосинтеза горного экотипа быстро уменьшалась и осенью была ниже, чем у обоих долинных экотипов. Таким образом, прогноз прироста сухого вещества по результатам измерения фотосинтеза должен основываться как на интенсивности, так и на продолжительности фотосинтеза. Важный вывод из этого исследования заключается в том, что географические расы с очень высокой интенсивностью фотосинтеза в октябре и ноябре имели и наибольшую скорость роста.

ДНЕВНОЙ ХОД ИЗМЕНЕНИЙ ФОТОСИНТЕЗА

Ранним утром светлого безоблачного теплого дня фотосинтез идет слабо вследствие небольшой интенсивности света и низкой температуры, несмотря на высокую влажность листьев и высокую концентрацию двуокиси углерода в межклетниках листьев. При повышении интенсивности света, нагревании воздуха устьица открываются, нетто-фотосинтез начинает быстро увеличиваться и может достичь максимума до полудня. Часто вслед за максимумом наступает полуденное понижение, которое может быть небольшим или резким. Полуденная депрессия нередко сменяется новым повышением фотосинтеза в более поздние послеполуденные часы, а затем окончательно снижается. Наблюдается это, как правило, ранним вечером вслед за уменьшением интенсивности света и температуры. Вследствие изменений условий внешней среды в разные дни и в пределах одного дня дневной ход фотосинтеза часто значительно отклоняется от описанного выше. Большинство дневных изменений фотосинтеза, за исключением полуденного понижения, хорошо взаимодействуют с изменениями интенсивности света.

Например, на открытом пространстве максимум интенсивности фотосинтеза трех видов покрытосеменных наблюдался в полдень и соответствовал максимуму интенсивности общей солнечной радиации. Под пологом леса интенсивность фотосинтеза значительно изменялась в течение дня. При этом наивысшая интенсивность наблюдалась в солнечных бликах. Дневной ход фотосинтеза голосеменных был очень различным в облачные и в солнечные дни. Без затенения в пасмурные или облачные дни типичная картина была такой: интенсивность нетто-фотосинтеза возрастала, достигая максимума около полудня, затем или уменьшалась, или оставалась более или менее постоянной в течение 1-2 ч и попом понижалась. В ясные солнечные дни фотосинтез обычно быстро возрастал, достигал максимума между 9 и 12 ч утра, затем, до поздних послеполуденных часов, понижался. Позднее он вновь усиливался и достигал второго максимума, но значительно более низкого.

Причины дневных изменений фотосинтеза. Регуляция дневного хода фотосинтеза под влиянием разнообразных внешних и внутренних факторов очень сложна. Главными из внешних факторов являются, по-видимому, свет, температура, наличие воды, содержание СО2 в воздухе и различные взаимодействия между ними. Внутреннюю регуляцию поглощения СО2 относили за счет разных причин: водного стресса, закрывания устьиц, чрезмерного дыхания, накопления конечных продуктов фотосинтеза и фотоокисления ферментов. Значение отдельных факторов, влияющих на поглощение СО2 , нередко изменяется. Например, утром, когда клетки тургесцентны, повышение интенсивности фотосинтеза взаимосвязано с нагреванием воздуха и увеличением интенсивности света. Однако полуденный спад при наивысшей интенсивности света часто происходит, особенно в жаркие дни, вследствие слишком большой потери воды, сопровождаемой закрыванием устьиц.

СЕЗОННЫЕ ИЗМЕНЕНИЯ

Необходимо различать сезонные изменения фотосинтетической способности деревьев, вызываемые развитием листьев и состоянием метаболизма, и наблюдаемую в полевых условиях фактическую интенсивность, которую определяют как фото синтетическую способность, так и накладывающиеся друг на друга факторы внешней среды. Это разграничение важно в связи с тем, что при исследовании сезонных изменений фотосинтеза растения часто периодически переносили из открытого грунта в лабораторию и измеряли фотосинтез при стандартных и благоприятных внешних условиях. Фактическая интенсивность фотосинтеза в полевых условиях гораздо сильнее изменяется в разные дни вследствие изменений факторов внешней среды, чем интенсивность, измеренная при стандартных условиях.

Сезонные изменения фотосинтетической способности у голосеменных происходят более постепенно, чем у листопадных покрытосеменных. Когда температура весной повышается и ночные заморозки становятся менее частыми, фотосинтетическая способность голосеменных постепенно увеличивается. Осенью интенсивность фотосинтеза также постепенно понижается. У листопадных покрытосеменных фотосинтез быстро ускоряется весной, когда деревья вновь покрываются листвой, остается высоким в течение лета, быстро уменьшается в конце лета, когда листья стареют, и окончательно падает до нуля, когда они опадают. Сезонные изменения фотосинтетической способности различаются у видов с разным характером развития листьев. У видов, побеги которых полностью формируются в зимующих почках, листовая поверхность достигает максимума в начале вегетационного периода. Гетерофильные и периодически отрастающие виды продолжают увеличивать количество листьев постепенно или путем периодического образования новых побегов в течение всего сезона (см. главу 3). Следовательно, сезонные изменения фотосинтетической способности происходят при изменении площади листьев. У голосеменных фотосинтетическая способность также изменяется при появлении новой листвы, а осенью голосеменные дольше, чем покрытосеменные, сохраняют свою способность к заметному фотосинтезу. В районах с теплыми зимами фотосинтез у вечнозеленых голосеменных может происходить в течение всех месяцев года.

Общий фотосинтез дерева и характер его сезонных изменений часто заметно варьируют в разные годы вследствие различий в размерах листовой поверхности и климатических изменений.

Сезонные изменения фотосинтетической способности сеянцев сосны ладанной и сосны веймутовой в Северной Каролине исследовали Грегор и Крамер (1963). Сеянцы выдерживали на открытом воздухе. Периодически их переносили в лабораторию и измеряли поглощение СО2 при 25°С и освещенности 43000 лк. Начиная с февраля интенсивность фотосинтеза в расчете на один сеянец медленно увеличивалась у обоих видов до апреля, затем быстро возрастала и потом снижалась в течение осени и зимы. Максимальная интенсивность у сосны ладанной достигалась в середине сентября, после чего происходило быстрое осеннее понижение. Максимум фотосинтеза у сосны веймутовой наблюдался между 15 июля и 15 сентября. Осеннее снижение было более постепенным. Более высокий и оолее поздний максимум фотосинтеза сосны ладанной был обусловлен в значительной степени тем, что у сеянцев трижды отрастали побеги, прибавляя новую хвою до конца лета. В то же время сеянцы сосны веймутовой давали новые побеги только один раз, в начале вегетационного периода.

Повышение интенсивности фотосинтеза после 9 апреля отчасти могло быть отнесено за счет увеличения ассимилирующей поверхности у обоих видов. Однако значительное увеличение с 14 февраля до 9 апреля нельзя объяснить этой причиной, так как к 9 апреля новая листва еще не распустилась. Это увеличение должно было происходить в результате восстановления фотосинтетической активности уже имевшейся хвои. Уменьшение фотосинтеза после максимума, наблюдавшегося в середине сезона, было вызвано у обоих видов не потерей хвои, а скорее пониженной фотосинтетической способностью существовавшей хвои.

Сезонные изменения интенсивности фотосинтеза на единицу листвы значительно отличались от сезонного хода интенсивности фотосинтеза в пересчете на один сеянец. У сосны ладанной интенсивность фотосинтеза на единицу длины пучка хвои заметно повышалась с февраля по март, несмотря на то, что в этот период новая хвоя не появлялась. Максимальная интенсивность на единицу длины пучка была достигнута в мае, за 4 месяца до максимума интенсивности на один сеянец. Высокая интенсивность сохранялась до сентября, а затем интенсивность фотосинтеза на единицу длины хвои и на один сеянец начала понижаться. У хвои сосны веймутовой фотосинтез также заметно повышался с февраля по март, но максимум не был достигнут до июля. Высокая интенсивность сохранялась в течение сентября, несколько понизилась в ноябре и достигла минимума в январе.

Зимний фотосинтез вечнозеленых растений. В районах с мягкими зимами у вечнозеленых растений фотосинтез осуществляется в течение всего года. В местах с суровыми зимами фотосинтез может быть незначительным несколько недель или месяцев.

Наблюдаемое поглощение СО2 или прирост сухой массы в течение зимы были установлены для сосны ежовой и сосны ладанной на юге Соединенных Штатов, для сосны замечательной и сосны обыкновенной в Аберистуите (Уэльс) и для широколистных вечнозеленых растений в Северной Италии. Деревья дугласии накапливали значительные количества продуктов фотосинтеза зимой в мягких климатических условиях прибрежного района северо-запада Соединенных Штатов. В засушливый год чистый прирост продуктов фотосинтеза в течение зимы приближался к 1/4 общего прироста за весь год. Вдоль всей прибрежной зоны Норвегии у сосен и елей уменьшалась сухая масса в течение коротких периодов зимой, но за всю зиму у них обнаружился чистый прирост, доказавший превышение фотосинтеза над дыханием. Сухая масса сеянцев ели ситхинской в Южной Шотландии удваивалась за период с конца сентября и до середины апреля. Большая часть прироста приходилась на конец марта - начало апреля, но некоторое количество сухой массы накапливалось в середине зимы.

В районах с холодными зимами интенсивность фотосинтеза у вечнозеленых растений наблюдалась вплоть до точки замерзания или даже немного ниже. Например, около Мюнхена поглощение СО2 елью европейской происходило в дни, когда температура воздуха была немного ниже нуля. В долине около Инсбрука (Австрия) фотосинтез ели европейской продолжался и зимой до наступления сильных морозов. Однако на границе древесной растительности около горы Патчеркофель морозная погода в ноябре (от -10° до -15°) вызвала прекращение фотосинтеза. Пизек и Випклер (1958) показали, что интенсивность нетто-фотосинтеза ели европейской и сосны кедровой европейской была заметной до поздней осени. Последующие изменения температуры на несколько градусов ниже и выше нуля вызывали колебания поглощения СО2 . Как только температура падала ниже -4° или -5°С, фотосинтез прекращался. Если же после этого морозы повторялись в течение нескольких ночей, то днем фотосинтез был ингибирован, даже если температура поднималась выше нуля. После мороза от -6° до -8°С нетто-фотосинтез прекращался, и требовалось несколько дней с мягкой погодой для восстановления фотосинтетической способности. Полностью фотосинтез возобновлялся с повышением температуры весной. Особенно это касалось частей кроны, в которых происходил распад хлорофилла в течение зимы. Весной вместе с колебаниями температуры колебалась и интенсивность фотосинтеза. Следовательно, фотосинтетический аппарат оставался функционально активным только до тех пор, пока зимой не наступали морозы, У верхней границы распространения леса температуры были в течение 4-5 месяцев такими низкими, что фотосинтез по существу был невозможен.

К-во Просмотров: 248
Бесплатно скачать Реферат: Процесс фотосинтеза