Реферат: Радиоактивность и её закономерности

К третьей группе относятся установки для измерения загрязненности воздуха активными газами и активными аэрозолями. Для измерения значительных концентраций а- и B-активных газов в воздухе применяются ионизационные камеры, соединенные с чувствительными электрометрами. Наиболее точные измерения концентраций B-активных газов в воздухе производятся с помощью B-счетчиков, помещенных в замкнутом объеме, наполненном загрязненным воздухом.

Для измерения концентрации в воздухе а- и р-активных аэрозолей последние улавливаются либо мембранными фильтрами при прокачивании через них воздуха (бумажные, картонные, асбестовые и т. д.), либо осаждаются на мишени-электроде методом электроосаждения. Этот метод используется в электрофильтрах.

К четвертой группе относятся радиометрические установки с датчиками в виде газонаполненных и сцинтилляционных счетчиков, служащие для измерения абсолютной активности проб воды и пищевых продуктов.

К пятой группе относятся комплекты аппаратуры для измерения индивидуальных доз у-лучей и нейтронов. Для измерения доз у-лучей применяются: 1) кассеты с фотопленкой и выравнивающими экранами для уменьшения «хода с жесткостью». Дозы у-лучей определяются по почернению пленки. Диапазон измерения доз при применении пленок различной чувствительности — от 0,1 до 1000 Р и выше; 2) малые ионизационные камеры из воздухоэквивалентных материалов. Дозы y-лучей определяют по спаду потенциала центрального электрода камеры в диапазоне от 0,02 до 20 Р для энергий у-квантов от 0,1 до 2 МэВ; 3) карманные дозиметры на три диапазона доз: до 0,2 Р, 5 и 50 Р (КД — 0,2, КД-5 и КД-50), позволяющие производить отсчет дозы в процессе работы. Дозиметры КД представляют собой ионизационные камеры, внутренний электрод которых соединен с подвижной нитью. Пропорциональное дозе отклонение нити измеряется с помощью окулярной и шкалы малогабаритного микроскопа.

К шестой группе относятся установки для измерения внешнего излучения от людей и измерения активности выдыхаемого воздуха. Существуют большие полые сцинтилляционные счетчики и счетные спектрометрические установки с большими кристаллами из Nal для регистрации внешних излучений от людей, предназначенные для изучения естественного у-излуче-ния людей и определения содержания в организме искусственно-радиоактивных у-излучателей и жестких B-излучателей (например, 90 Sr+90 V) по их тормозному излучению. Кроме того, существуют установки для определения содержания активных веществ в организме по активности выдыхаемого воздуха. Так, например, по содержанию радона в выдыхаемом воздухе определяют количество радия в организме.

§3. Закон радиоактивного распада. Период полураспада

Отдельные радиоактивные ядра претерпевают превращение независимо друг от друга. Поэтому ыожно считать, что количество ядер dN, распадающихся за малый промежуток времени dt, пропорционально как числу имеющихся ядер N, так и промежутку времени dt:

dN=-λNdt.

Здесь λ.—характерная для радиоактивного вещества константа, назывемая постоянной распада. Знак минус взят для того, чтобы dN можно было рассматривать как приращениечисла нераспавшнлся ядер N.

Интегрирование этого выражения приводит к соотношению

N=N0 e- λt

где Nо—количество ядер в начальный момент, N—количество нераспавшпхся атомов в момент времени t. Эта формула выражает закон радиоактивного превращения. Этот закон весьма прост: число нераспавшихся ядер убывает со временем по экспоненте.

Количество ядер, распавшихся за время t, определяется выражением

No-N=No(1-e-λt ).


?????, ?? ??????? ??????????? ???????? ??????????????? ?????????? ????, ?????????? ???????? ??????????? ?. ??? ????? ???????????? ????????

??????

Период полураспада для известных в настоящее время радиоактивных ядер находится в пределах от 3*10-7 с до 5*1015 лет.


?????? ??????? ????? ????? ?????????????? ????. ?????????? ???? dN(t), ???????????? ??????????? ?? ?????????? ??????? ?? t ?? t + dt, ???????????? ??????? ?????????: dN(t) = λN(t)dt. ????? ????? ??????? ?? ???? ???? ????? t. ?????????????, ????? ?????? ????? ???? No ????????? ????????????? ???? ?????????? ????? ?????????????? ????????? tdN(t). ???????? ??? ????? ?? ????? ???? No, ??????? ??????? ????? ????? τ ?????????????? ????:

Таким образом, среднее время жизни есть величина, обратная постоянной распада λ:


????????? ? ??????????, ??? ?????? ??????????? ? ?????????? ?? τ ???????? ??????????, ?????? In 2.

§ 4. Виды радиоактивного распада ядер

АЛЬФА-РАСПАД — испускание а-частиц атомными ядрами в процессе самопроизвольного радиоактивного распада. В результате А.-р. «материнское» ядро с зарядом Z и массовым числом А превращается в новое «дочернее» ядро с зарядом Z-2 и массовым числом А-4.

Известно около 160 а-активных ядер. Подавляющая часть их распадается в конце периодической системы и обладает Z>82. Несколько а-активных ядер (например, 146 62 Sm) имеется в области редких земель. а-активные ядра в области Z<82 наблюдаются почти исключительно среди нейтронодефицитных ядер (ядер с непропорционально малым числом нейтронов), сильно неустойчивых по отношению к К-захвату и испусканию позитронов.

Времена жизни а-активных ядер колеблются в очень широких пределах: от 3·10-7 с для 212 Ро до 5-1015 лет для 142 Се. Энергии А.-р. всех тяжелых ядер заключены в пределах 4— 9 МэВ; энергии А.-р. ядер в области редких земель составляют 2—4,5 МэВ.

В процессе А.-р. различают две стадии: образование а-частицы из нуклонов ядра и испускание а-частицы ядром. О первой стадии в настоящее время почти ничего не известно. Ясно, однако, что образование а-частиц происходит с заметной вероятностью и поэтому мало сказывается на времени жизни а-активных ядер, которые определяются второй, существенно более медленной стадией процесса.

БЕТА-РАСПАД — радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в нуклон другого рода: либо нейтрона (п) в протон (р), либо протона в нейтрон. В первом случае из ядра вылетает электрон (е- ) и происходит так называемый β- распад. Вылетающие при Б.-р. электроны и позитроны носят общее название бета-частиц. Взаимные превращения нуклонов сопровождаются появлением еще одной частицы нейтрино (ν) в случае β+ -распада или антинейтрино (Z) в случае β- распада. При β- распаде число протонов (Z) в ядре увеличивается на единицу, а число нейтронов уменьшается на единицу. Массовое число ядра А, равное общему числу нуклонов в ядре, не меняется, и ядро-продукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов. Наоборот, при β+ распаде число протонов уменьшается на единицу, а число нейтронов увеличивается на единицу и образуется изобар, стоящий по соседству слева от исходного ядра. Символически оба процесса Б.-р. записываются в следующем виде:


где X-символ ядра, состоящего из Z-протонов,Az—нейтронов.


?????????? ???????? ?~-??????? ???????? ??????????? ?????????? ???????? ? ?????? ? ??????????? ????????? ? ???????????? (?????? ??????????? ???????? ≈13 ???):

Б.-р. наблюдается как у естественно-радиоактивных, так и у искусственно-радиоактивных изотопов. Для того, чтобы ядро было неустойчиво по отношению к одному из типов Р-превращения (т. е. могло испытать Б.-р.), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Б.-р. происходит выделение энергии. Энергию Б.-р. Ер можно вычислить по этой разности масс, пользуясь соотношением Е==МС2 , где С — скорость света в вакууме. В случае β- распада

Eβ -=(Mz -Mz +1 )C2 ,

где М — масса нейтральных атомов. В случае β+ -распада нейтральный атом теряет один из электронов в своей оболочке, и энергия Б.-р. равна

Eβ =(Mz -Mz-1 -2me )C2 ,

где me — масса электрона.

Энергия Б.-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из легких частиц может уносить практически любую энергию от 0 до Еβ , т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.

Итак, при β- распаде масса исходного атома превышает массу конечного атома, а при β+ распаде это превращение составляет не менее двух электронных масс.

Б.-р. имеет место у элементов всех частей периодической системы. Тенденция к β-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению.с тем количеством, которое отвечает максимальной устойчивости. Таким образом, тенденция к β+ -распаду или К-захвату характерна для нейтронодефицитных, а тенденция к β- распаду — для нейтроноизбыточных изотопов.

К-во Просмотров: 544
Бесплатно скачать Реферат: Радиоактивность и её закономерности