Реферат: Радиотехника и космос история и современность

Впрочем, уже сейчас чувствительность радиотелескопов вызывает удивление. Если сравнить энергию излучения, воспринимаемую самыми лучшими из современных радиотелескопов, с энергией видимого света, посылаемого звездами, то окажется, что радиотелескопы в тысячи раз чувствительны гигантских телескопов-рефлекторов. Среди всевозможных приемников электромагнитных волн радиотелескопы не имеют себе равных.

5.О зоркости радиотелескопов.

Благодаря сложным оптическим явлениям лучи от звезды, уловленные телескопом, сходятся не в одной точке (фокусе телескопа), а в некоторой небольшой области пространства вблизи фокуса, образуя так называемое фокальное пятно. В этом пятне объектив телескопа конденсирует электромагнитную энергию светила, уловленную телескопом. Если взглянуть в телескоп, звезда нам покажется не точкой, а кружочком с заметным диаметром. Но это не настоящий диск звезды, а только ее испорченное изображение, вызванное несовершенством телескопа. Мы видим созданное телескопом фокальное пятно.

Чем больше диаметр объектива, тем меньше и размеры фокального пятна.

С величиной фокального пятна тесно связана разрешающая способность телескопа. Так называют наименьшее расстояние между двумя источниками излучения, которые данный телескоп дает различить в отдельности. Если, например, в двойной звезде обе звезды так близки на небе друг к другу, что их изображения, создаваемые телескопом, попадают практически внутрь фокального пятна, двойная звезда покажется в телескоп одиночной.

Оптические телескопы обладают весьма большой раз­решающей способностью. В настоящее время наилуч­шие из оптических телескопов способны «разделить» двойные з везды с расстоянием между составляющими в 0,1 секунды дуги! Под таким углом виден человече­ский волос на расстоянии 30 м.

Радиотелескопы воспринимают весьма длинновол­новое излучение. Поэтому фокальное пятно в радио­телескопах огромно. И соответственно разрешающая способность этих инструментов весьма низка. Оказы­вается, например, что радиотелескоп с диаметром зеркала 5 м при длине радиоизлучения 1 м способен разделить источники излучения, если они отстоят друг от друга больше чем на де сять градусов!

Десять градусов—это двадцать видимых попереч­ников Луны. Значит, указанный радиотелескоп не спо­собен «разглядеть» в отдельности такие мелкие для него небесные светила, как Солнце или Луна.

Ясно, что низкая разрешающая способность обыч­ных небольших радиотелескопов — большой недоста­ток; даже при огромных размерах зеркала она, как правило, уступает разрешающей силе человеческого глаза (не говоря уже об оптических телескопах). Как же можно устранить это препятствие?

Физикам уже давным-давно известно явление сло­жения волн, названное ими интерференцией. В школь­ном учебнике физики подробно описано, какое значе­ние имеет интерференция на практике. Оказывается, интерференцию можно использовать в радиоастро­номии.

Вообразим, что одновременно из двух источников распространяются две волны. Если они, как говорят физики, находятся в противоположных фазах, то есть «горб» одной приходится как раз против «впадины» другой, обе волны «погасят» друг друга, и колебания среды прекратятся. Если это световые волны—насту­пит тьма, если звуковые—тишина, если волны на воде — полный покой.

Может случиться, что волны находятся в одинако­вых фазах («горб» одной волны совпадает с «горбом» другой). Тогда такие волны усиливают друг друга, и колебания среды будут совершаться с удвоенной ин­тенсивностью.

Представим себе теперь устройство, называемое радиоинтерферометром (рис.3). Это два одинаковых радиотелескопа, разделенных расстоянием (базой) и соеди ненных между собой электрическим кабелем, к середине которого присоединен радиоприемник. От источника радиоизлучения на оба радиотелескопа не­прерывно приходят радиоволны. Однако тем из них, которые попадают на левое зеркало, приходится про­делать несколько больший путь, чем радиоволнам, уловленным правым радиотелескопом. Разница в пу­тях, называемая разностью хода, равна отрезку АБ. Нетрудно сообразить, что если в этом отрезке уклады­вается четное число полуволн улавливаемого радио­излучения, то «левые» и «правые » радиоволны придут в приемник с одинаковой фазой и усилят друг друга. При нечетном числе полуволн произойдет обратное— взаимное гашение радиоволн, и в приемник радиосиг­налы вовсе не поступят.

Обратите внимание: при изменении направления на источник излучения меняется и разность хода.

Достаточно при этом (что очень важно!) ли шь весьма незначительное изменение угла , чтобы «гашение» волн сменилось их усилием или наоборот, на что сра­зу же отзовется весьма чувствительный ради опри ­емник.

Радиоинтерферометры делают, как прави ло, не­подвижными. Но ведь Земля вращается вокруг своей оси, и поэтому положение светил на небе непрерывно меняется. Следовательно, в радиоинтерферометре по­стоянно будут наблюдаться периодические усиления и ослабле ния радиопередачи от наблюдаем ого источни ­ка космических радиоволн.

Радиоинтерферометры гораздо «зорче» обычных радиотелескопов, так как они реагируют на очень ма­лые угловые смещения светила, а значит, и позволя­ют исследовать объекты с небольшими угловыми раз­мерами. Иногда радиоинтерферометры состоят не из двух, а из нескольких радиотелескопов. При этом раз­решающая способность радиоинтерферометра сущест­венно увеличивается. Есть и другие технические уст­ройства, которые позволяют современным «радио глазам» астрономов стать очень «зоркими», гораздо более зоркими, чем невооруженный человеческий глаз!

рис.3 Схема радиоинтерферометра (d- его база, т.е. расстояние между радиотелескопами, характеризует направление на источник радиоволн).

Радиоинтерферометры гораздо «зорче» обычных радиотелескопов, так как они реагируют на очень ма­лые угловые смещения светила, а значит, и позволя­ют исследовать объекты с небольшими угловыми раз­мерами. Иногда радиоинтерферометры состоят не и з двух, а из нескольких радиотелескопов. При этом раз­решающая способность радиоинтерферометра сущест­венно увеличивается. Есть и другие технические уст­ройства, которые позволяют современным «радио глазам» астрономов стать очень «зоркими», гораздо более зоркими, чем невооруженный человеческий глаз!

В феврале 1976 года советские и американские ученые осуществили интересный эксперимент— радио­телескопы Крымской и Хайсптекской (США) обсерва­ торий в этом опыте играли роль «глаз» исполинского радиоинтерферометра, а расстояние во много тысяч километров между этими обсерваториями было его базой. Так как база была очень велика и космические радио объекты наблюдались с разных континентов, до­стигнутая разрешающая способность оказалась поис­тине фантастической—одна десятитысячная доля се­кунды дуги! Под таким углом виден с Земли на Луне след от ноги космонавта! Позже к этим эксперимен ­там присоединились и австралийские ученые, так что астрономы «взглянули» на космические радиоисточ­ники сразу с трех континентов. Результаты оправдали затраченные усилия: в ядрах галактик и квазарах обнаружены взрывные процессы необычайной актив­ ности, причем в ряде случаев наблюдаемая скорость разлета космических облаков в квазарах, по- видимо­му, превосходит скорость света!

Таким образом, новая техника поставила перед наукой и нов ые проблемы принци пи ального характе­ра. Достигнутая ныне разрешающая способность ра­диоинтерферометров — это еще не предел. В будущем, вероятно, радиотелескопы станут еще зорче.

Кстати сказать, и в оптической астрономии исполь­ зуют интерферометры. Их присоединяют к крупным телескопам, чтобы измерить реальные поперечники зве зд. В обоих случаях интерферометры играют роль своеобразных «очков», позволяющих рассмотреть важ­ные подробности в окружающей нас Вселенной.

Но оптически е ин терферометры по зоркости зна­чительно уступают тем, которые употребляются ныне в радиоастрономии.

6.«Радиоэ хо» в астрономи и.

До сих пор речь шла о пассивном изучении космиче­ских радиоволн. Они улавливаются радиотелескопами, и задача астронома заключается ли шь в том, чтобы наилучшим образом расшифровать эти сигналы, полу­чить с их помощью как можно больше сведений о не­бесных телах. При этом исследователь н икак не вме­шивается в ход изучаемого им явления—он лишь пассивно наблюдает.

Та отрасль радиоастрономии, с которой мы теперь кратко познакомимся, имеет и ной, если так можно выразиться, активный характер. Ее называют радио­локационной астрономи ей.

Слово «локаци я» означает опред елени е местополо­же ни я какого-ни будь предмета. Если, например, для этого используется звук, то говорят о звуковой лока­ции . Ею, как известно, широко пользуются современ­ные мореплаватели. Особое устройство, называемое эхолотом, посылает в направлении ко дну океана ко­роткие, но мощные неслышимые ультразвуки. Отра­зи вшись от дна, они возвращаются, и эхолот фикси­рует время, затраченное звуком на путешествие до дна и обратно. Зная скорость распространения звука в воде, легко подсчитать глубину океана.

Подобным же образом можно измерить и глубину колодца или какого-нибудь ущелья. Громко крикнув, затем ждите, когда до вашего уха донесется эхо — отраженный звук. Учтя, что скорость звука в воздухе равна 337 м/с, легко вычислить искомое расстояние. Любопытно, что звуковая локация встречается и в мире животных. Летучая мышь обладает специальным естественным локационным органом, который, испуская неслышимые звуки, помогает мыши ориентироваться в полете. Эти ультразвуки поглощаются в толстом слое волос, и поэтому, не получив обратного звукового эха, летучая мышь воспринимает голову как «пустое место». Этим и объясняется, что летучая мышь иногда в темноте ударяется о головы людей, не прикрытые головным убором.

Когда говорят о «радиолокации», то под этим словом подразумевают определение местоположения предмета с помощью радиоволн. Радиолокационная астрономия — еще совсем молодая отрасль науки. Систематически радиолокационные наблюдения небесных тел начались всего пятьдесят лет назад. И все же достигнутые успехи весьма значительны. Очень интересны и дальнейшие перспективы этого активного метода изучения небесных тел.»Активного» потому, что здесь человек сам направляет в космос созданные им искусственные радиоволны и, наблюдая их отражения, может затем по собственному желанию видоизменить эксперимент.

Образно говоря, в радиолокационной астрономии человек «дотрагивается» до небесных тел созданным им радиолучем, а не пассивно наблюдает их излучение.

7.Радиолокация Луны и планет.

К-во Просмотров: 264
Бесплатно скачать Реферат: Радиотехника и космос история и современность