Реферат: Расчет кожухотрубного теплообменного аппарата

Для одноходовых теплообменников при сравнительно небольших расходах жидкости скорость её движения в трубах низка и, следовательно, коэффициенты теплоотдачи невелики. Для увеличения последних при данной поверхности теплообмена можно уменьшить диаметр труб, соответственно увеличив их высоту (длину). Однако теплообменники небольшого диаметра и значительной высоты не удобны для монтажа, требуют высоких помещений и повышенного расхода металла на изготовление деталей, не участвующих непосредственно в теплообменниках.

Рис. 1. Кожухотрубный теплообменный аппарат.

1 — корпус; 2 — трубы; 3 — трубные решетки; 4 — крышки; 5 — штуцеры для входа и выхода из трубного пространства; 6 — штуцеры для входа и выхода из межтрубного пространства; 7 — поперечные перегородки межтрубного пространства; 8, 9 — опорные липы соответственно при вертикальном и горизонтальном расположениях аппарата.

2. Расчетная часть

Целью выполнения курсовой работы является расчет кожухотрубного испарителя. В данном разделе представлена формулировка задачи для расчета кожухотрубного испарителя, представляются исходные данные, необходимые расчетные формулы и расчеты.

2.1. Содержательная формулировка задачи

Задачей расчета кожухотрубного испарителя является определение основных размеров аппарата. Здесь рассматривается определение диаметра корпуса аппарата, количество, диаметр и длины трубок, выбор размещения трубок, скорость движения теплоносителей.

2.2. Условие задания

Рассчитать и выбрать кожухотрубчатый испаритель для испарения 2000 кг/ч уксусной кислоты начальной с температурой 35 градусов при давлении 1,5*105 Па.

2.3. Расчет теплообменного аппарата

Движущей силой любого процесса теплообмена является разность температур теплоносителей. Обозначим массовые расходы теплоносителей через и (кг/ч), их удельные теплоемкости - , (Дж/кг K), а их температуры входа и выхода из теплообменного аппарата — соответственно через . Для процесса испарения кг/с жидкости с начальной температурой и начальной удельной теплоемкостью потоком жидкости (газа) кг/с с удельной теплоемкостью начальной и конечной температурами получим:

причем i2 — энтальпия образовавшегося пара.

Из этого уравнения находим тепловую нагрузку аппарата и расход вещества, за счет которого испаряется уксусная кислота. Определяем объемный расход обоих веществ. Для этого надо выбрать вещество, за счет которого будет испаряться уксусная кислота и рассчитать среднюю разницу температур между теплоносителями.

Пусть в трубном пространстве течет вещество, которое будет испаряться (будем обозначать его индексом 1), а в межтрубном – которым будем испарять (будем обозначать его индексом 2). Вещества обычно направляют противотоком друг к другу. При противотоке всегда требуется меньшая теплопередающая поверхность, чем при прямотоке, для передачи равного количества тепла в одинаковых условиях начальных и конечных температур сред.

В подавляющем большинстве случаев температуры сред в процессе теплопередачи будут изменяться в результате происходящего теплообмена, а следовательно, будет изменяться и разность температур вдоль поверхности теплообмена. Поэтому рассчитывают среднюю разность температур по длине аппарата , но так как это изменение не линейно, то рассчитывают логарифмическую разность температур.

где и — большая и меньшая разности температур па концах теплообменника.

Выбираем, что в трубном пространстве течет уксусная кислота, а в межтрубном- анилин.

1. Определяем среднюю разность температур при противотоке теплоносителей.

35 уксусная кислота 118

95 анилин 145

_____________ ____________

Отношение , следовательно, средняя разность температур:

2. Рассчитаем среднюю температуру каждого теплоносителя .

для уксусной кислоты

для анилина

Выпишем теплофизические свойства теплоносителей при их

К-во Просмотров: 340
Бесплатно скачать Реферат: Расчет кожухотрубного теплообменного аппарата