Реферат: Распределение примесей при диффузии и неограниченного и ограниченного источников
Рисунок 5. Схема процесса диффузии в открытой трубе из газообразного или жидкого (а), твердого (б) и поверхностного (в) источников:
1 - газовая система; 2 - источник примеси; 3 - кварцевая труба; 4 - кремниевые пластины; 5 - нагреватель; 6 - выходное отверстие.
Наиболее широко в технологии производства ИМС используют способ диффузии в открытой трубе (Рисунок 5). Он является основным для первой стадии. Кремниевые пластины 4 (от 50 до 200 шт) загружают в кассете в кварцевую трубу 3 через ее выходной конец, сообщающийся с атмосферой. Входной конец трубы соединен с газовой системой 1 подачи газа-носителя.
Газообразные диффузанты подаются из баллона и перед входом в реактор смешиваются с азотом и кислородом. В зоне реакции образуется оксид легирующего элемента, а на поверхности кремниевых пластин выделяется элементарная примесь. Например, процесс диффузии фосфора сопровождается реакциями
на поверхности Si 2Р2О5 + 5Si - > 5SiO2 + 4Р
Пары жидких диффузантов из дозатора разбавляются газом-носителем и также образуют оксиды соответствующих элементов, например:
4РОС13 + ЗО2 => ЗР2О5 + 6С12
Диффузия из газообразных и жидких источников проводится в однозонной диффузионной печи с резистивными нагревателями 5 (Рисунок 5, а, в).
Способы проведения двухстадийной диффузии примесей в поверхность полупроводниковых пластин
Способ диффузии | Тип примеси | Особенности |
Диффузия в открытой трубе | В, Р, Sb (твердый, жидкий, газообразный источники) | Легкая управляемость составом ПГС, скоростью газового потока; атмосферное давление |
Ампульный | As (твердый источник) | Большая трудоемкость и себестоимость (одноразовое использование ампулы); безопасность диффузии мышьяка; вакуум 10-2 - 10-3 Па |
Бокс-метод |
В, Р, Sb (твердый источник) | Широкие пределы регулирования концентрации примеси, отсутствие влияние газового потока; атмосферное давление |
При проведении диффузии из твердого источника в ряде случаев используют двухзонные печи с нагревателем 5 (Рисунок 5, б). При этом в низкотемпературной зоне помещают источник примеси 2, а в высокотемпературной - кассету с пластинами 4. Газ-носитель, поступая из системы подачи 1, вытесняет из кварцевой трубы воздух, который удаляется через отверстие 6. Проходя через зону источника примеси, газ-носитель захватывает атомы примеси и переносит их в зону расположения пластин. Атомы адсорбируются на поверхности и диффундируют в глубь кремниевых пластин.
В качестве поверхностного источника используют легированные оксиды, примесно-силикатные стекла, пленки металлов (например, золота), слои легированного поликристаллического кремния. Диффузию проводят в слабо окислительной среде.
Способ диффузии в открытой трубе позволяет легко управлять составом парогазовой смеси, скоростью потока газа и обеспечивает требуемый профиль распределения примесей. Воспроизводимость параметров диффузии от пластины к пластине и по площади каждой пластины зависит от распределения температуры в рабочей зоне печи, числа пластин, их расположения относительно газового потока, типа диффузанта, чистоты проведения процесса и др.
Диффузию в замкнутом объеме (ампульный способ) проводят в кварцевой ампуле 2, в которую помещают пластины 4 и источник примеси 5, откачивают ее до остаточного давления 10~2 - 10~3 Па или заполняют инертным газом и запаивают (Рисунок 6). Перед использованием ампулу тщательно очищают и прокаливают в вакууме при температуре 1200° С в течение двух часов. Ампулу вводят в кварцевую трубу 1 диффузионной печи с нагревателем 3.
При нагревании источника пары примеси осаждаются на поверхности полупроводниковых пластин и диффундируют в глубь нее. Ампульным способом можно провопить диффузию мышьяка, бора, сурьмы, фосфора с однородностью легирования до ± 2,5%. Его достоинством является минимальная токсичность, так как процесс происходит в замкнутом объеме.
После проведения процесса ампулу разрушают (вскрывают). То, что она имеет одноразовое использование, сильно удорожает процесс. В настоящее время ампульный способ применяют преимущественно при диффузии мышьяка.
Диффузия в полугерметичном объеме (бокс-метод) является промежуточным способом между диффузией в открытой трубе и в ампуле. Так же, как в последнем.
Рисунок 6. Схема процесса диффузии в замкнутом объеме:
1 - кварцевая труба; 2 - ампула; 3 - нагреватель; 4 - кремниевые пластины; 5 - источник примеси
Рисунок 7. Схема процесса диффузии бокс-методом:
1 - кварцевая труба; 2 - ампула; 3 - нагреватель; 4 - кремниевые пластины; 5 - источник примеси; 6 - выходное отверстие; 7 - пришлифованная крышка лучае, пластины 4 и источник примеси 5 помещают в кварцевую ампулу (бокс) 2, но не запаивают ее, а закрывают пришлифованной кварцевой крышкой 7, обеспечивающей небольшой зазор (Рисунок 7). Ампулу помещают у выходного отверстия 6 кварцевой трубы 1 диффузионной печи с нагревателем 3, через которую продувают инертный газ. Газ уносит следы кислорода и влаги из ампулы, после чего ее закрывают крышкой и проводят диффузионный процесс.
По сравнению с диффузией в открытой трубе бокс-метод менее чувствителен к скорости потока газа-носителя и позволяет в более широких пределах регулировать поверхностную концентрацию примеси. Преимуществом перед ампульным способом является возможность многократного применения кварцевой ампулы.
физико-химические основы ионного легирования
Преимущества ионной имплантации позволили этому методу выйти за рамки исследовательских лабораторий и шагнуть, в промышленность. Ионная имплантация позволяет не только существенно повысить эффективность, снизить себестоимость и процент брака при производстве некоторых существующих типов полупроводниковых приборов, но и создавать принципиально новые приборы. Например, при создании высокоомных резисторов обычной технологией возникали трудности из-за больших размеров этих резисторов. Если же использовать ионное легирование, то можно довольно легко получить высокоомные слои с небольшими размерами. В последнее время, применяя ионную технологию, были получены, а затем качественно улучшены варакторы, IMPATT - диоды, МОП-транзисторы.
Наряду с легированием полупроводников, ионные лучи находят применение и для осуществления травления материалов. В основу положен факт приблизительного равенства объемов веществ различной природы, распыляемых частицами малых энергий. Следовательно, распыление пленки фоторезиста и материала в окнах этой пленки происходит примерно с одной скоростью. В данном процессе полностью отсутствует подтрав фигур травления и потому очень точно воспроизводится рисунок фоторезиста.