Реферат: Разделительный силлогизм
Следовательно, правильное умозаключение есть построение такого суждения из материи других суждений, замена которого противоречащим ему суждением приводит к противоречию с посылками.
Умозаключения делятся на дедуктивные, индуктивные и умозаключения по аналогии.
В определении дедукции в логике выявляются два подхода.
1. В традиционной (не в математической) логике дедукцией называют умозаключения от знания большей степени общности к новому знанию меньшей степени общности к новому знанию меньшей степени общности.
2. В современной математической логике дедукцией называют умозаключение, дающее достоверное (истинное) суждение. Четкая фиксация существенного различия классического и современного понимания дедукции особенно важна для решения методологических вопросов. Правильно построенному дедуктивному умозаключению присущ необходимый характер логического следования заключения из данных посылок.
Дедуктивные умозаключения
Дедуктивные умозаключения – те умозаключения, у которых между посылками и заключением имеется отношение логического следования.
Пример:
Все млекопитающие животные кормят детенышей молоком.
Все дельфины – млекопитающее .
Все дельфины кормят детенышей молоком.
Здесь первая посылка «Все млекопитающие животные кормят детенышей молоком» является общеутвердительным суждением и выражает большую степень обобщения по сравнению с заключением, также являющимся общеутвердительным суждением «Все дельфины кормят детенышей молоком». Мы строим умозаключение от признака, принадлежащего классу «млекопитающие», к его принадлежности к виду – «дельфин», т.е. от общего класса к его частному случаю, к подклассу. Частный случай при этом не следует путать с частным суждением вида «Некоторые S есть P» или « Некоторые S не есть P».
Дедуктивные умозаключения делят на :
1. Умозаключения, основанные на отношениях суждений по логическому квадрату:
а) умозаключение противоречия;
б) умозаключение противоположности;
в) умозаключение субконтрарности;
г) умозаключение подчинения;
2. Умозаключение модальности;
3. Умозаключение превращения;
4. Умозаключение обращения;
5. Умозаключение противопоставления предикату.
Рассмотрим умозаключения по логическому квадрату.
«Логический квадрат» – это не что иное, как виды отношений между одинаковыми, как говорят в логике, «по материи» суждениями, т.е. суждениями, имеющими один и тот же субъект и один и тот же предикат, но отличающимися по количеству и по качеству. Наличие однотипных отношений (противности, подпротивности, подчинения и противоречия) между такими суждениями позволяет графически представить четыре типа этих отношений в виде квадрата.
А противности Е
подчинения | подчинения |
J подпротивности O
Отношение противности (контрарности) имеет место между суждениями общеутвердительными (А) и общеотрицательными (Е).
Сущность этого отношения состоит в том, что два противных суждения не могут быть одновременно истинными, но оба могут быть одновременно ложными.
Поэтому, если одно из противных суждений истинно, то другое непременно ложно, но если одно из противных суждений ложно, то нельзя безоговорочно утверждать, что другое суждение истинно, - оно неопределенно, то есть может оказаться как истинным, так и ложным.
Например, если истинно суждение: «Всякая причина имеет следствие» (А), то противное ему суждение: «Ни одна причина не имеет следствия» (Е) будет ложно. Но если ложно суждение: «Все слушатели нашего курса раньше изучали логику» (А), то противное ему суждение «Ни один слушатель нашего курса раньше не изучал логику» (Е) будет неопределенным, т.е. оно может оказаться как истинным, так и ложным.