Реферат: Разработка библиотечных средств

2) если найденный элемент ali равен нулю, процесс вычисления завершается с выдачей результата det(A) = 0 ;

3) если l№ i , тогда строки исходной матрицы с номерами i,l поменять местами.

После завершения преобразования матрицы, определитель вычисляется по формуле:

,

где p – число выполненных операций перемены строк местами.

2.2 Обращение матриц

Обратной к матрице A называется матрица A-1, обладающая свойством:

AЧ A-1 = A-1Ч A = I ,

где I – единичная диагональная матрица. Опишем один из универсальных и эффективных методов расчета обратной матрицы (метод Жордана-Гаусса, в книге [4-218] описан как “метод исключений”). В [5-22] приведен более эффективный по памяти алгоритм обращения матрицы.

Пусть имеем матрицу A вида (2.1.1) и пусть B – единичная диагональная матрица такого же размера. Создадим рабочую матрицу R размером Nґ 2N просто присоединив матрицу B справа к матрице A :

.

Над строками такой расширенной матрицы будем производить преобразования, аналогичные тем, которые были описаны в п.2.1. Левую часть матрицы R будем называть подматрицей A, правую – подматрицей B. Весь процесс преобразования матрицы R разобьем на 3 этапа.

1 этап. Выполним преобразования строк матрицы так, чтобы все элементы, лежащие ниже диагональных элементов подматрицы A, обратились в нули. При этом может использоваться выбор главного элемента.

2 этап. Выполним преобразования так, чтобы все элементы, лежащие выше диагональных элементов подматрицы A, обратились в нули. Преобразования надо выполнять в обратном порядке: со столбца номер n и до столбца номер 2.

3 этап. Каждую строку расширенной матрицы R с номером i делим на диагональный элемент aii .

После завершения процедуры подматрица A превращается в единичную диагональную матрицу, а подматрица B будет равна искомой обратной матрице A-1 . Алгоритм имеет порядок O(n3).

2.3. Методы решения систем линейных уравнений

Задача поиска решений системы линейных уравнений имеет не только самостоятельное значение, но часто является составной частью алгоритма решения многих нелинейных задач. Основные методы решения СЛУ:

- метод Гаусса;

- метод обращения матрицы;

- итерационные методы.

2.4. Метод Гаусса

Пусть имеем систему линейных уравнений:

Простой метод Гаусса состоит в следующем.

Составим расширенную матрицу, приписав к матрице коэффициентов СЛУ дополнительный столбец – правые части уравнения:

.

Выполним над строками расширенной матрицы преобразования, аналогичные тем, которые были описаны в п. 2.1:

,

К-во Просмотров: 660
Бесплатно скачать Реферат: Разработка библиотечных средств