Реферат: Разработка электронного устройства для бесконтактного измерения температуры плазмы.
. (1.8)
Поскольку законы Стефана—Больцмана, Планка, Вина верны только для абсолютно черного тела, то путем измерения полной или монохроматической яркости истинная температура может быть определена также только для этого тела.
Излучение реальных тел всегда меньше, чем абсолютно черного тела при той же температуре. Это следует из закона Кирхгофа. Действительно, излучение реального тела можно характеризовать при помощи монохроматического коэффициента испускательной способности ε λТ , равного отношению яркостей монохроматических излучений реального и абсолютно черного тела при одной и той же температуре и одной и той же длине волны
. (1.9)
Методы определения температуры.
В настоящее время для измерения высоких температур можно использовать различные методы.
Яркостные и цветовые температуры излучающих тел можно определять фотографическим методом, поскольку почернение фотопластинки пропорционально интенсивности падающего на нее излучения. Необходимо, однако, предварительно отградуировать пластинку при помощи эталонного источника с известной температурой, находящегося на том же расстоянии от фотопластинки, что и тело, температуру которого мы измеряем. Если предварительно выделить, например, при помощи спектрографа, узкий спектральный интервал, то после фотометрирования можно определить яркостную температуру тела и даже отдельных его участков. Подобные методы применялись, в частности, для измерений температуры как неподвижных, так и быстродвижущихся твердых тел. Если же при помощи фотопластинки определять интенсивность монохроматического излучения, например для двух длин волн, или распределение энергии в спектре излучения, то по отношению интенсивностей можно определить цветовую температуру.
Методы инфракрасной пирометрии, т.е. методы, использующие инфракрасное излучение, позволяют резко расширить диапазон измеряемых температур и сторону низких температур, поскольку по закону Планка с уменьшением температуры максимум излучения перемещается в сторону более длинных волн.
Кроме описанного выше, существуют и другие оптические методы определения температуры пламени по его излучению. Температуру пламени можно определять по отношению интенсивностей спектральных линий одних и тех же атомов, введенных в пламя или находящихся в пламени элементов, по распределению энергии во вращательном или колебательном молекулярном спектре продуктов горения в пламени и по уширению спектральной линии (эффект Допплера).
Измерение температуры по вращательному молекулярному спектру.
Температуру пламени можно также определять по распределению интенсивности между линиями тонкой вращательной структуры полосатого спектра. Соответствующие вероятности переходов могут быть найдены теоретически. Так как линии вращательного спектра обычно находятся очень близко друг к другу, необходимо применение спектрографов, обладающих большой дисперсией.
В этих случаях чаще всего используют лежащую в ультрафиолетовой области спектра вращательную полосу гидроксила ОН.
Существуют различные модификации рассматриваемого метода, позволяющие исключить ошибки, связанные с реабсирбцией излучения в пламени. Например, применяется так называемый метод равных интенсивностей, при котором температура определяется по двум линиям данной полосы, обладающим одинаковой интенсивностью (при данной температуре пламени), а в связи с этим и одинаковой реабсорбцией, которая в этом случае не повлияет на окончательные результаты измерения. Но это верно лишь в том случае, когда распределение температуры по сечению пламени можно считать равномерным; при наличии градиента температуры по сечению пламени реабсорбция при применении и этого метода вызовет погрешности измерения.
Для внешних областей пламени значения температур, измеренных описанным методом, совпадают со значениями, получаемыми другими методами.
Для зоны реакции значения температур, полученных этим методом, зачастую сильно завышены, особенно для разреженного пламени. В некоторых случаях зависимость между логарифмом относительной интенсивности и обратным значением температуры не является линейной. Все это говорит о неравновесном характере излучения в зоне реакции, о задержке возбуждения, при которой по вращательному спектру определяют не истинную температуру, а вращательную, а также, в ряде случаев, о наличии хемилюминесценции.
Описанный метод может быть использован для установления степени равновесности исследуемых процессов горения. /6/
Измерение температуры по колебательному молекулярному спектру
Температуру пламени можно определять также по распределению интенсивности колебательных полос внутри системы полос. При этом измеряется или суммарная интенсивность всей полосы, или максимальная интенсивность передней части каждой полосы; это позволяет (в отличие от измерения температуры по вращательному спектру) использовать спектральные приборы со сравнительно небольшой дисперсией.
Относительные вероятности переходов для полос могут быть вычислены или определены экспериментально при помощи источника излучения с известной температурой, излучающего те же самые колебательные полосы. Экспериментальный способ определения вероятностей переходов обеспечивает более высокую точность измерения температуры.
Так же как и при измерении температуры по вращательному спектру, данный способ измерения позволяет определить истинную температуру пламени лишь при наличии термодинамического равновесия. Наличие хемилюминесценции делает этот метод неприменимым для измерения температуры пламени, а пря наличии задержки возбуждения он позволяет определить не истинную, а колебательную температуру, которая может заметно отличаться от истинной температуры пламени. /11/
Измерение температуры по Допплеровскому уширению спектральной линии.
Если излучающие атомы движутся от наблюдателя или к нему, то спектральная линия смещается соответственно в сторону более длинных или более коротких волн. Это явление называется эффектом Допплера. Излучающие атомы совершают в пламени хаотическое движение, которое приводит к уширению спектральной линии в сторону как больших, так и меньших длин волн. Это уширение зависит от скорости молекул и, следовательно, от температуры.
Полуширина линии Δλ определяется выражением
, (1.10)
где М—молекулярный вес излучающих атомов или молекул;
T— температура;
ν—волновое число спектральной линии;
R—газовая постоянная;
С—скорость света.
Измерение температуры сильно разреженных пламен при малой концентрации излучающих атомов практически возможно путем измерения полуширины спектральной линии, но это требует применения специальной аппаратуры – интерферометра Фабри – Перо в сочетании со спектрографом, обладающим высокой разрешающей способностью.