Реферат: Разработка и исследование ресурсосберегающего способа ковки заготовок, обеспечивающего повышение

- международной научной конференции "Наука и образование - ведущий фактор стратегии "Казахстан-2030" (г. Караганда, 2001, 2002 г.г.);

- международной научно-практической конференции «Научно-техни­ческий прогресс в металлургии» (г. Темиртау, 2001, 2003 г.г.).

Публикации. По материалам диссертации опубликовано 13 работ, в том числе 9 статьей в научно-технических журналах, 3 доклада в между­народных научных конференциях и один предпатент Республики Казахстан.

Структура и объем диссертации. Диссертация изложена на 121 страницах машинописного текста, включая 54 рисунков и 9 таблиц. Состоит из введения, четырех глав, выводов, списка использованных источников в количестве 91 наименования, приложения.

Содержание работы

Во ВВЕДЕНИИ обоснована актуальность диссертационной работы, опре­делены цель и задачи исследования, научная новизна и практическая цен­ность.

В ПЕPВОЙ ГЛАВЕ выявлена роль сдвиговых деформации при обработке металлов давлением (ОМД) и проведен анализ существующих способов деформирования, реализующие интенсивные сдвиговые дефор­ма­ции, направ­ленные на повышение качества заготовок, особенно литых.

Анализ существующих способов ковки, реализующих интенсивные сдвиговые деформации, выявил необходимость разработки новых способов деформирования с при­ме­нением надежных кузнечных инстру­ментов простой конфигурации и несложной конструкции, обеспечивающих повы­шение качества поковок и заготовок путем интенсификации сдвиговых деформации в объеме слитков и заготовок.

Для решения проблемы рационализации техно­логи­ческих процессов ковки и создания единой теорети­ческой основы расчета в основном при­меняются упро­щенные аналитические методы и различные полу­эмпи­ри­ческие под­ходы, построенные на обобщении лабораторных и производ­­­ствен­ных опытов. Практи­ческие возмож­ности таких методов дос­таточно ограни­чены из-за принятых гипотез и допущений. В то же время решение ряда практичес­ких вопросов технологии ОМД требует более полной и досто­верной информации о напряженно-деформированном состоянии металла по сравнению с той, что дают полуэмпирические и существующие анали­ти­ческие модели. Переход к задачам обработки метал­лов давлением с учетом реальных ме­ханических свойств металла возможен только на основе исполь­зования современных численных методов анализа, в частности метода конеч­ных элементов (МКЭ).

Во ВТОРОЙ ГЛАВЕ теоретически обоснован способ деформирования, реализующий интенсивные сдвиговые деформации в объеме металла заготовки, и разработан кузнечный инструмент для его осуществления.

Реализация интен­сивных сдвиговых деформаций в объеме металла заготовок инстру­ментами с плоскими рабочими поверхностями расширяют их технологи­ческие воз­мож­ности. При деформировании такими инстру­ментами развитие интенсивных сдвиговых деформаций в объеме металла заго­товок можно реализовать пере­распре­делением сил тре­ния вдоль кон­тактных по­верх­­ностей между заго­товкой и инстру­ментом за счет изме­нения движения рабочей поверх­ности. Например, горизонтальное перемещение верхней рабочей поверхности при осадке плоскими бойками (рисунок 1) приводит к возникновению допол­нительных напряжений сдвига на контактной поверхности и смещению линии раздела пластического течения металла по контактной поверхности от её середины, что обуславливает развития интенсивных сдвиговых дефор­мации в объеме металла заготовки.

Рисунок 1 – Схема деформирования плоскими бойками с наложением дополнительных однопоточных деформаций сдвига

Соотношение и г /и в горизонтальных и г и вертикальных и в сос­тав­ляю­щих перемещения верхней рабочей поверхности инструмента определяет характер процесса деформирования заготовки. Напри­мер, при и г /и в =0 проис­ходит только обжатие заготовки. Сдвиг заготовки возможен только при и г /и в ¹0. При определенных значениях соотношения и г /и в и контактных усло­вий можно обеспечить наилучшие показатели напряженно-дефор­миро­ван­ного состояния в объеме заготовки и энергосиловых пара­метров процесса. Для определения рациональных значений соотношений и г /и в и оптимальных контактных условий необходимо подробное исследо­вание напряженно-дефор­­мированного состояния в объеме заготовки и энерго­силовых пара­метров процесса деформирования с учетом реаль­ных ме­ханических свойств металла, которое возможно толь­ко на основе исполь­зования современных чис­ленных методов анализа, в частности метода конечных элементов (МКЭ).

Конечно-элементное моделирование процесса деформирования прово­дилось с помощью программы ANSYS, предназначенной для проведения анализа в широком круге инженерных дисциплин (прочность, теплофизика, динамика жидкостей и газов и электромагнетизм). В ходе конечно-элементного моделирования процесса деформирования заготовки из стали 40Х получены результаты в виде полей распределения напряжений и дефор­­­маций по сечению заготовки, эпюр распределения контактных напря­жений (рисунок 2), а также в виде лис­тингов, где приведены числовые зна­чения указанных величин во всех узлах.

а) б)

в) г)

а и б – Распределение гидростатического давления s 0 и степени деформации сдвига Г по поперечному сечению заготовки;

в и г – Распределение давления и напряжения трения на контактной поверхности;

Рисунок 2 – Графическое представление результатов конечно-элементного моделирования при u г /u в =3

В результате конечно-элементного моделирования установлено, что при малых значениях коэффициента трения, когда не обеспечи­вается достаточного сцепления между заготовкой и рабочей поверх­ностью инстру­мента, увеличение соотношения u г /u в не приводит к сдвигу заготовки. В связи с этим деформирование заготовки по указанной схеме необходимо осуществлять инструментом с грубо обработанной рабочей поверхностью без применения смазки. Сравнительный анализ распределения гидро­стати­ческого давления по сечению заготовки показывает, что при всех значениях соотно­шения u г /u в по поперечному сечению в основном преобладают сжимающие напряжения. Схема всестороннего сжатия, обес­печиваемая в большей части поперечного сечения, особенно в осевых зонах, гарантирует отсутствие макро- и микротрещин в кованом металле и благоприятствует максимальной степени пластич­ности дефор­мируемой заготовки. Наряду с этим можно заметить, что зоны, прилегающие к сво­бод­ным поверх­ностям заготовки, находятся под воздействием растягиваю­щих напря­жений. При увеличении соотношения u г /u в площадь зон, находящиеся под воздействием растягивающих напря­жений, и значения самих напря­жений увеличиваются. Это может привести к вскрытию металла и появлению тре­щин в указанных зонах. Поэтому для обеспечения целос­тности металла необходимо ограни­чить соотношения u г /u в . Анализ распределения степени деформации сдвига Г по поперечному сечению заго­товки показывает, что при всех значениях соотношения u г /u в интенсивные сдвиговые деформации локали­зованы вдоль короткой диа­гонали поперечного сечения. С увеличением соотношения u г /u в возрастают максимальные степени деформации сдвига. Максимальные зна­чения степени дефор­ма­ции сдвига для всех значений соотношения u г /u в расположены в осевой зоне заго­товки, что обуславливает их интенсивную проработку. Таким образом, увеличение соотношения u г /u в обуславливает развитие интен­сивной сдвиговой деформации в объеме металла заготовки. Вблизи свободных поверх­ностей и некоторых участках контактной поверх­ности имеются зоны затруд­нен­ной деформации, где значения Г минимальны. Путем кантовки заготовки в последующих этапах дефор­мирования зоны интен­сивных сдви­говых дефор­мации можно рас­простра­­нить во все участки заготовки.

Анализ распределения напряжений на контактной поверхности показывает, что с увеличением соотношения u г /u в происходит смещение линии раздела пластического течения от середины и постепенно реализуется однопоточная схема течения металла, что обуславливает более интенсивное развитие сдвиговых деформаций в объеме металла. Для оценки энерго­силовых параметров процесса по значениям дав­лений на контактной поверхности и напряжений контактного трения вычис­лены деформирующее усилие, приходящееся на единицу длины заготовки. График изменения деформирующего усилия (рисунок 3, а) показы­вает, что при u г /u в =2 и u г /u в =3 (кривые 2 и 3) значение деформирующего усилия почти в два раза ниже чем при u г /u в =1 и при осадке. Такое снижение значений дефор­мирующего усилия с увеличением u г /u в связано с умень­шением пло­щади контакта при отрыве части поверхности заго­товки от инструмента и мень­шими значениями давления на контактной поверхности при реализации интен­сивной сдвиговой дефор­мации. Вместе с тем при деформировании по рассматриваемой схеме возникает горизонтальная сила, которая возрастает с увеличением соотно­шения u г /u в (рисунок 3, б).

а) б)

0 - u г /u в =0 (осадка); 1 - u г /u в =1; 2 - u г /u в =2; 3 - u г /u в =3

Рисунок 3 – ­Изменение усилий деформирования (а) и горизонтальной силы (б) в ходе нагружения

Сопоставление показателей напряженно-деформированного состояния заготовки и энергосиловых параметров процесса при различных значениях u г /u в показывает, что наиболее лучшие показатели полу­чаются при соотно­шениях u г /u в =2¸3 и деформировании заготовки инструментом с грубо обработан­ной рабочей поверхностью без применения смазки. Дальней­шее увеличение u г /u в может быть ограничено, из-за возможного опрокидывания заго­товки при интенсивном отрыве поверхности заготовки от поверхности инструмента. Результаты конечно-элементного моделирования про­цесса дефор­­мирования заготовок можно применить в целях создания теорети­чес­кой базы данных для возможных случаев их реализации в практической дея­тельности различными инструментами.

Для реализации интенсивных сдвиговых деформации заготовки по вышеуказанной схеме деформирования предложен кузнечный инструмент с плоскими рабочи­ми поверхностями (рисунок 4), который отличается от существую­­щих инструментов отсутствием сложных узлов, что улучшает его монтаж, наладку и эксплуатацию.

Инструмент работает следующим образом. В исходном положении (рисунок 4, а) бойки разведены, и заготовка 4 подается между ними. При ходе ползуна пресса вниз верхний боек 1 через рабочую вставку 2 давит на заготовку 4, в результате противодействия со стороны заготовки 4 рабочая вставка 2 перемещается по наклонной плоскости верхнего бойка 1. Благодаря этому поверхности соприкосновения рабочей вставки 2 и нижнего бойка 5 воздействуют на обрабатываемую заготовку 4 как в нормальном, так и в касательном направлениях, вызывая одновременно её обжатие и поперечный сдвиг за счет противоположно направленных сил контактного трения со стороны рабочей вставки 2 и нижнего бойка 5. После достижения необходи­мого сдвига заготовки (рисунок 4, б) верхний боек с рабочей вставкой поднимается вместе с ползуном пресса, а пружины 3 возвращают рабочую вставку 2 в исходное положение.

а) б)

1 – верхний боек; 2 – рабочая вставка; 3 – удерживающие пружины;
4 – деформируемая заготовка; 5 – нижний боек;

а) – исходное положение; б) – конечное положение.

Рисунок 4 – Схема деформирования инструментом, реализующий интенсивные сдвиговые деформации заготовки

Перемещение рабочей вставки u р.в. при деформировании заготовки можно разложить на горизонтальные и г и вертикальные и в составляющие, при определенных соотношениях и г /и в которых как было установлено выше происходит наиболее лучше деформирование заготовки. Обеспечение тре­буемых значений соотношений и г /и в зависит от конструктивных пара­метров инструмента, машинного трения между рабочей вставкой и верхним бойком, деформационного трения между заготовкой и рабо­чей вставкой, реологи­ческих свойств материала, обрабаты­ваемой заготовки.

Для того чтобы рабочая вставка начала перемещаться по наклонной поверхности верхнего бойка, сила, действующая со стороны заготовки, должна образовывать с нормалью к наклонной поверхности угол больше угла трения, т.е. для предлагаемого инструмента должно выполнятся следующее условие:

a > a тр . (1)

где a – угол наклона соприкасающихся поверхностей верхнего бойка и рабо­чей вставки;

a тр – угол трения на соприкасающихся поверхностях верхнего бойка и рабочей вставки.

При несоблюдении условия (1) деформирование заготовки будет осуществляться без перемещения рабочей вставки, т. е. будет осуществляться только осадка заготовки.

При деформировании заготовки рабочие вставки, пере­мещаясь по наклон­­ной поверхности, растягивают пружины 3 (рисунок 4). Для того что­бы при деформировании пружины работали только на растяжение, они в началь­ный момент должны быть перпен­ди­кулярны к наклонной поверхности бойка. Для обес­печения такого расположения до начала дефор­мирования пружины необходимо ус­танавли­вать в несколько натянутом сос­тоянии, с начальной (установоч­ной) нагрузкой F п.0. , формула определения которой выведена из рассмотрения равновесия рабочей вставки до начала дефор­мирования заготовки

. (2)

где G – сила тяжести рабочей вставки;

n п – количество пружин;

f – коэф­фициент трения на контактной поверхности рабочей вставки с верхним бойком.

К-во Просмотров: 132
Бесплатно скачать Реферат: Разработка и исследование ресурсосберегающего способа ковки заготовок, обеспечивающего повышение