Реферат: Разработка месторождений газоконденсатного типа

исследование влияния проницаемости "сухой" (без связанной воды) пористой среды на компонентоотдачу (эксперименты 2, 2а, 3);

то же для пористой среды, содержащей 10 % от объема пор связанной воды (опыты За, 4а);

то же для пористой среды, содержащей 30 % от объема пор связанной воды (эксперименты 4, 3b).

Рассмотрим особенности углеводородоотдачи истощаемого газокон-денсатного пласта, пористая среда которого является "сухой", то есть не содержит связанную воду. Данный случай имеет не только теоретическое, но и практическое значение, поскольку содержание связанной воды во многих газоконденсатных залежах весьма незначительно (единицы процен­тов объема пор). Целесообразность проведения экспериментов без связан­ной воды, обусловлена также необходимостью оценить влияние пористой среды на массообменные процессы при сравнении результатов с данными, полученными на бомбе PVT.

На рис.2—7 представлены отдельные результаты сравнения ди­намики состава продукции истощаемого пласта и некоторых параметров добываемой смеси для моделей пласта с различной проницаемостью (сосуд PVT-соотношений можно условно рассматривать как образец пористой среды с весьма высокой проницаемостью, например, 10-10 —10-11 м2 ). Из сравнения графиков следует, что с уменьшением проницаемости от 10-10 — 10-11 м2 (эксперимент №2) до 64.10-15 м2 (№ 2а) и далее до 9,1-10-15 м2 (№3) происходит снижение давления максимальной конденсации компонентов пластовой смеси. Особенно это проявилось у низкомолекулярных компо­нентов.

Для исследования типичных, но сравнительно "легких" газоконденсат­ных смесей (молекулярная масса фракции С5+ в смеси исходного состава равна 115 г/моль) наблюдается интенсивный рост содержания в продукции компонентов С2+ после снижения пластового давления ниже давления мак­симальной конденсации, причем вне зависимости от испарения конденсатогазовый фактор продукции после снижения давления ниже давления максимальной конденсации вновь возрастает (рис. 4), достигая вдвое больших, чем при давлении максимальной конденсации, значений к кон­цу отбора пластовой смеси (p=1 МПа). КГФ растет за счет компонентов С5 и С7 ; декан (С10 ) практически не испаряется. При этом молекулярная масса фракции С5 + почти монотонно снижается во всей области давлений, от pрнк до р =1 МПа (рис. 5).

C2-4 % (Молярная доля)

Рис.2.


Зависимость содержания фракции С2-4 в равновесной газовой фазе от «пластового» давления:

1 – сосуд PVT-соотношений; пористая среда без связной воды с проницаемостью:

2 – 64·10-15 м2

3 – 9,1·10-15 м2

Если поведение кривой "содержание фракции С2-4 , % как функции пластового давления" аналогично поведению соответствующей кривой для фракции С5 + (график КГФ), то и зависимость молекулярной массы фрак­ции С2-4 также аналогична этим двум кривым; в области давлений ниже давления максимальной конденсации молекулярная масса С2-4 вновь увели­чивается, в отличие от этого параметра для стабильного конденсата.

Сопоставление результатов экспериментов на физических моделях пласта с бомбовыми данными показывает, что пористая среда в обследо­ванном диапазоне не препятствует процессу нормального испарения вы­павшего конденсата, хотя некоторые детали массообменных процессов в пустотелом сосуде PVT-соотношений и в пористой среде, естественно, раз­личаются. Так, представляет интерес область давлений от 8—10 до 13 — 15 МПа (рис. 5, 6). Здесь заметно нарушается монотонный характер уменьшения молекулярной массы стабильного конденсата (фракция С5+ ), что обусловливается вступлением в область максимальной конденсации фракции промежуточных углеводородов (см. рис.2). По-видимому, сме­щение равновесия для этих углеводородов в сторону (нормального) испаре­ния оказывает влияние на конденсацию легкой части фракции С5+ , близ­кой по химическому составу к промежуточным углеводородам: конденса­ция С5+ заметно затормаживается, причем более заметно в пористой среде с меньшей проницаемостью, по сравнению с сосудом PVT-соотношений (см. рис. 6).

Рассмотрим особенности углеводородоотдачи истощаемых газоконденсатных пластов, различающихся коллекторскими свойствами (прони­цаемостью), пористая среда которых содержала связанную воду в количе­стве 10% объема пор (см. табл. 1.29). В данном случае сосуд PVT не рас­сматривается, сравниваются лишь эксперименты с частично водонасыщенными пористыми средами, различающимися проницаемостью (64-10 -15 м2 — эксперимент №3а; 9,1-10 -15 м2 — эксперимент №4а).

Анализ результатов показал, что зависимости состава продукции и ее параметров от давления близки к тем, что характеризуют процесс истоще­ния сухой пористой среды. Известно, что связанная вода, как правило, за­нимает наиболее мелкие поры, "выключая" их таким образом из процесса фильтрации и ухудшая сорбционные свойства коллектора. Поэтому при­сутствие воды в определенной степени сгладило различия между пористы­ми средами с большей и меньшей проницаемостями. Тем не менее и в этом случае для более проницаемой пористой среды зависимость содержания, в частности, углеводородов С2-4 в продукции от текущего давления в "пласте" расположена несколько выше (рис. 7).

Графики зависимости молекулярных масс фракций от текущего плас­тового давления также аналогичны тем, что получены на "сухих" пористых средах.


Результаты экспериментов 4 и 36 (см. табл. 2), выполненных на тех же моделях пласта, но при более высоком содержании связанной воды в их пористых средах (30 % объема пор), в данной работе не приведены, так как они в значительной мере аналогичны результатам исследований на "сухих" моделях.

Повышенное содержание связанной воды лишь еще больше сглажива­ет различия между пористыми средами с большей и меньшей проницаемостями.

Таким образом, анализируя полученные результаты, можно сделать следующие выводы.

Процесс глубокого истощения газоконденсатной системы типа вуктыльской до давления порядка 1 МПа, моделируемый как в сосуде PVT-соотношений, так и в пористых средах с различной проницаемостью и водонасыщенностью, начиная с давления максимальной конденсации (т. е. при р =• 5 — 7 МПа), характеризуется наличием области нормального испа­рения для компонентов от С5 до С8 — С9 .

Компоненты жидкой фазы пластовой смеси в процесс нормального испарения вовлекаются тем активнее, чем ниже их молекулярная масса.




При значениях молекулярной массы выше 100 г/моль выход компо­нентов мало изменяется в процессе снижения пластового давления от 5 — 7 до 1 МПа, а резкое снижение в продукции доли компонентов С10+ позво­ляет утверждать, что практического значения добыча этой высокомолеку­лярной части пластовой смеси в области давлений нормального испарения иметь не может, в отличие от легкой части пластовой смеси (фракции С2 -ф).

Значения проницаемости, а также водонасыщенности вмещающей газоконденсатную смесь пористой среды в исследованной области практиче­ски не влияет на особенности процессов дифференциальной конденсации и нормального испарения газового конденсата.

Таким образом, при той газоконденсатной характеристике, какую имеет вуктыльская пластовая углеводородная смесь, динамика фазовых проницаемостей в пористой среде с типичными коллекторскими свойства­ми не столь драматична, как при разработке месторождения Нокс-Бромайд. Из средних по проницаемости и пористости объемов перового пространства вуктыльского пласта-коллектора на завершающей стадии разработки будут извлекаться углеводороды, в том числе за счет процесса нормального испарения. Естественно, в худших по сравнению со средними зонах коллектора возможны явления, из-за которых часть запасов углево­дородов будет блокирована и составит неизвлекаемые пластовые потери. На снижение потерь, в том числе и этих, направлено предложенное ВНИИГАЗом и реализуемое на Вуктыле в районе УКПГ-8 и УКПГ-1 воз­действие на пласт сухим неравновесным газом.

К-во Просмотров: 1569
Бесплатно скачать Реферат: Разработка месторождений газоконденсатного типа