Реферат: Разработка средств оценки эффективности алгоритмов поиска и обнаружения целей прицельных радиоэлектронных комплексов

· Математические модели отказоустойчивых систем со сложным комбинированным резервированием и систем с мажоритарной структурой способных к реконфигурации.

· Методика построения математических моделей отказоустойчивых систем, надежностное поведение которых после появления отказов описывается немарковським дискретно-непрерывным случайным процессом.

Теоретические и практические результаты диссертации использованны:

· при выполнении госбюджетных научно-исследовательских работ в лаборатории НДЛ-51 Национального университета “Львовская политехника”;

· в учебном процессе у Национального университета “Львовская политехника” в лекционном курсе и практикуме дисциплины “Системотехническое проектирование радиоэлектронных комплексов” ; в дипломном проектировании студентами специальности “Радиоэлектронные устройства, системы и комплексы”.

· в учебном процессе колледжа “Западноукраинский коллегиум” в лекционном курсе и практикуме дисциплины “Надежность, контроль и эксплуатация ЭВМ”; в дипломном проектировании студентами специальности “Обслуживание компьютерных и интеллектуальных систем и сетей”.

Личный вклад соискателя. Личный вклад автора в полученных научных результатах состоит в том, что все положения, которые составляют суть диссертации, были сформулированны и решены самостоятельно. В роботах написанных в соавторстве автору диссертации принадлежат: [1] - разработка математической модели алгоритма поиска и обнаружения целей прицельного РЭК: марковской на основе расширенного описания состояния и логико-вероятностной на основе представления объекта структурно-автоматной моделью и определение показателей эффективности алгоритма поиска и обнаружения целей прицельного РЭК; [2] - формирование и исследование моделей вариантов построения радиоэлектронных комплексов с использованием метода логико-вероятностного траекторного моделирования; [4], [10] - сравнительное исследование эффективности и точности метода эквивалентной интенсивности потока, способ формализованного перехода от немарковской модели к системе уравнений Колмогорова-Чепмена; [5] - установлен перечень определяющих параметров радиоэлектронных систем и предложено расширенное описание состояния, [6]- методика оценки эффективности алгоритмов поиска и обнаружения целей прицельных радиоэлектронных комплексов; [7], [8] - структурно-автоматные модели двух отказоустойчивых структур; [9]- структурно-автоматная модель радиоэлектронной системы с комбинированным структурным резервирования. [11] - формализованное представление структуры и поведения системы немарковского типа.

Апробация работы. Основные положения и результаты работы докладывались и обсуждались на: международной научно-технической конференции “Современные проблемы автоматизированной разработки и производства радиоэлектронных средств и подготовка инженерных кадров”(г. Львов,1996 г.); 4-й международной научно-технической конференции “Опыт разработки и применение приборо-технологических САПР микроэлектроники”(г. Львов, 1997 г.); 4-й украинской научно-технической конференции “Автоматика-97”(г. Черкассы); международной научно-технической конференции TCSET98 “Современные проблемы средств телекоммуникации, компьютерной инженерии и подготовки специалистов”(г. Львов, 1998 г.); международном симпозиуме “Надежность и качество '99”(г. Пенза, 1999 г.); 3-й международной научно-технической конференции “Математическое моделирование в электротехнике, электронике и электроэнер­гетике”(Львов, 1999), 15-й открытой научно-технической конференции молодых ученых и специалистов Физико-механического института им. Г.В. Карпенко НАН Украины “КМН-2000” (г. Львов, 2000 г.). Результаты работы обсуждались на научных семинарах кафедры “Теоретическая радиотехника и радиоизмерения” Национального университета “Львовская политехника”, Украинского Львовского института бизнеса и информатики, ОАО “Концерн “Электрон” ОКБ “ТЕКОН”.

Публикации. По теме диссертационной работы опубликованы 11 научных работ, в том числе 4 статьи в профессиональных научных журналах, 7 публикаций в сборниках работ, тезисов и докладов научно-технических конференций.

Структура работы. Диссертация состоит из вступления, четырех разделов, выводов, списка использованных информационных источников и приложений. Диссертация изложена на 216 страницах и включает 125 страниц основного текста, 46 таблиц на 14 страницах, 33 рисунка на 15 страницах, список использованных информационных источников включает 173 наименования на 17 страницах и 4 приложения на 45 страницах.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во вступлении раскрыта сущность научно-практической проблемы создания средств оценки эффективности алгоритмов поиска и обнаружения целей прицельных радиоэлектронных комплексов, обоснована актуальность работы, необходимость проведения исследований, сформулирована цель работы, показана научная новизна и практическая ценность полученных результатов, приведены сведения об апробации работы.

В первом разделе проанализирован состав и принципы построения типичных прицельных РЭК, выявлены их особенности. Сформулированы требования к прицельным РЭК и рассмотрены особенности их применения. В результате качественного анализа для проведения исследований сформирован полный набор средств поиска и обнаружения целей прицельных РЭК. Для формирования конкретных вариантов применен подход прототипного проектирования: разрабатываемый вариант может включать как полный так и неполный набор средств, полученный путем исключения из полного набора отдельных РЭС.

Рассмотрена задача выбора показателей эффективности прицельных РЭК. В качестве показателя для количественной оценки эффективности варианта АПОЦ выбрана вероятность выполнения задачи комплексом, а ограничивающим условием – допустимое значение среднего времени выполнения задачи. АПОЦ комплекса является входной информацией для проведения исследований в данной диссертационной работе.

Для решения задач системотехнического этапа проектирования прицельных РЭК необходимо проводить многочисленные исследования и расчеты для оценки показателей эффективности различных вариантов их построения для выбора структуры РЭК и определить необходимые значения параметров для РЭС и АПОЦ с учетом того, что комплексы используются в условиях конфликта.

При построении адекватной математической модели АПОЦ для учета наряду с функ­цио­наль­ным аспектом и надежностного, в наборе параметров модели необходимо иметь пока­за­те­ли надежности РЭС. Современные РЭС прицельных РЭК проектируются со свойством отказоустойчивости, которое обеспечивается комбинированным структурным резерви­рованием или использованием мажоритарных структур способных к реконфигурации. В государственных и отраслевых стандартах для таких структур отсутствуют соответствующие математические модели, а поэтому необходимо разработать средства их анализа. Разработанные средства должны учитывать все возможности обеспечения отказоустойчивости таких структур и адекватно отображать их поведение при появлении отказов. Вместе с этим необходимо иметь математические модели отказоустойчивых структур, в которых учитывается эффект старения аппаратных средств и произвольные вероятностные законы распределения для продолжительности процедур технического обслуживания.

При решении проектных задач на этапе системотехнического проектирования РЭК достоверность результатов обеспечивается использованием двух разных методов моделирования объекта проектирования. Указанным выше требованиям отвечают: метод пространства состояний и метод логико-вероятностного траекторного моделирования .

В разделе сформулирован перечень задач, которые решены в данной работе.

Во втором разделе разработаны две математические модели АПОЦ прицельных РЭК и методика для исследования эффективности вариантов этих алгоритмов. Проведена апробация методики на примере конкретного прицельного РЭК.

Первая модель – марковская в виде системы дифференционных уравнений Колмогорова-Чепмена построенная с использованием метода пространства состояний, вторая – логико-вероятностная.

Получение марковской модели в виде системы дифференционных уравнений и логико-вероятностной модели осуществляется с использованием новой технологии, которая предусматривает два этапа: на первом этапе создается программная модель, а на втором этапе с помощью программной модели формируются математические модели.

Первой задачей , решенной в данном разделе есть разработка структурно-автоматной модели (САМ) АПОЦ прицельного РЭК. Эта модель необходима для формализованного представления объекта моделирования, которая разрешает без известных трудностей получить марковскую и логико-вероятностную модели АПОЦ. Для этого разработаны компоненты САМ: вектор состояния и дерево правил модификации.

Вектор состояния (ВС) использован для кодирования пространства состояний, в которых может находиться прицельный РЭК в процессе выполнения задачи. В известных методиках построения марковских моделей РЭК с использованием метода состояний и переходов модель отображает только надежностное поведение РЭК. На основе проведенного анализа функциональной и надежностного поведения прицельного РЭК в процессе поиска и обнаружения цели в работе предложена следующая структура ВС: номер выполняемого операционного блока; номер РЭС, которая служит источником информации; количество повторных обращений к источнику целеуказания; количество градаций порога обнаружения; количество попыток захвата цели; количество зон обнаружения.

В процессе выполнения задачи прицельным РЭК вектор состояния изменяется определенным образом. Для отображения собственно изменений и их последовательности согласно методике автоматизированного построения марковських моделей сформировано дерево правил модификации ВС. Для этого решены следующие подзадачи: установлено множество событий, разработаны правила формирования множества условий, сформированы формулы расчета интенсивностей переходов, разработаны правила формирования формул расчета вероятностей альтернативных переходов, разработаны правила модификации вектора состояния. Полученная САМ в виде ВС и дерево правил модификации разрешают построить программную модель (АПОЦ).

Марковська модель в виде графа состояний и переходов АПОЦ прицельного РЭК формируется из перечня состояний и матрицы интенсивностей переходов, которые получаются в результате компиляции программной модели. На основе полученной матрицы интенсивности переходов с использованием формализованных процедур формируется система дифференционных уравнений Колмогорова-Чепмена. Решение этой системы уравнений дает распределение вероятности пребывания в каждом состоянии, из которых и формируется избранный показатель эффективности, в данном случае вероятность выполнения комплексом поставленной задачи.

Вторая модель АПОЦ комплекса в данной работе построена с использованием логико-вероятностного метода траекторного моделирования. Данный метод разрешает определить значения вероятности и среднего времени выполнения задачи. Оценка вероятности выполнения и времени выполнения задачи АПОЦ осуществляется с помощью транзитивных вероятностей альтернативных переходов pmn от m-го блока к n-му. Для этого используется графовая модель АПОЦ, в которой вершины отвечают операционным блокам, а дуги - переходам. Если предоставить каждой дуге значения вероятности перехода по ней pmn , то каждому маршруту алгоритма L можно поставить в соответствие вероятность его существования и время прохождения

, (1)

, (2)

где TBm - время выполнения m-го операционного блока, который лежит на данном маршруте.

В свою очередь вероятность РУВ и среднее время ТУВ выполнение задачи комплексом определяются так:

К-во Просмотров: 348
Бесплатно скачать Реферат: Разработка средств оценки эффективности алгоритмов поиска и обнаружения целей прицельных радиоэлектронных комплексов