Реферат: Разработка технологии электротермического получения силикоалюминия с использованием малозольных восстановителей

В первом разделе приведены результаты анализа литературных данных о способах получения алюминиево-кремниевых сплавов, в том числе о процессе углетермического восстановления оксидов кремния и алюминия. Определены задачи работы.

Во втором разделе изложено описание использованных методик. Лабораторные исследования восстановимости (степени восстановления)шихты проводили на печи Таммана. Методика имитировала последовательный сход шихты из колошниковой в реакционную зону промышленной печи. Шихты выдерживали в печи при температуре 2000о С в течение 20 минут (в отдельных опытах использовали другие параметры). Кинетику восстановления изучали на миниатюрной печи с графитовым нагревателем с малой инерционностью и высокой скоростью нагрева и охлаждения (до 500 о /мин) с системой для сбора газа. Прочность высушенных (105о С) ипрокаленных (1000о С) брикетов определяли на лабораторном прессе при давлении 19,6 мПа. УЭС шихт определяли методом измерения падения напряжения при постоянном токе. Опытно-заводские испытания проводили на однофазной двухэлектродной открытой и герметизированной (со сводом) печи с угольной подиной мощностью 200 кВА с графитированными электродами диаметром 150 мм опытного завода Всесоюзного (Всероссийского) алюминиево-магниевого института (ВАМИ). Все шихты рассчитывали на получение в силикоалюминии 63% Al. Сульфатные добавки дозировали совместно с другими компонентами при подготовке брикетов. Гранулы лигнина готовили с 20% масс. каолина.

В третьем разделе приведены результаты лабораторных исследований по изучению механизма и кинетики процесса восстановления алюмосиликатных шихт в широком диапазоне составов силикоалюминия с использованием различного сырья и восстановителя, выдержки шихты при низких и высоких температурах. Также представлены результаты исследований влияния на процесс содержания летучих компонентов восстановителей, в т.ч. пироуглерода, взаимосвязи составов сырья и восстановителя, сульфатных добавок.

В четвертом разделе представлены результаты плавок шихт с повышенным содержанием нефтекокса и КНТК на однофазной двухэлектродной печи.

В пятом разделе приведены результаты анализа многолетних данных производства силикоалюминия на трехфазной печи при использовании шихт с различным составом восстановителя.

ОСНОВНЫЕ ЗАЩИЩАЕМЫЕ ПОЛОЖЕНИЯ

Степень восстановления алюмосиликатов углеродом обусловлена соотношением Al:Si в шихте, продолжительностью пребывания шихты в зонах низких и высоких температур, составом минерального сырья и восстановителя, летучие компоненты которого не участвуют в восстановлении, а образуемый пироуглерод повышает скорость протекания процесса.

■ В опытах на печи Таммана (рис. 1) с использованием в шихтах различного минерального сырья (кривые 1-3, 5 ) и технического карбида кремния (кривая 4) при одинаковом составе углеродистого восстановителя: газового угля и нефтяного кокса в соотношении 70:30 по Снлт. (дозировка 95% от стехиометрии) установлено:

▪ Извлечение кремния из сырья в диапазоне составов силикоалюминия с расчетным содержанием Si ~34-60% имеет достаточно близкие значения и практически не зависит от формы используемого углерода в шихте: в виде SiC или свободного углерода шихты. Восстановление оксида кремния протекает по реакции (1).

SiO2 + 3С = SiC + 2СО (1)

▪ Для шихт с соотношением Al:Si = 2:3 (~60% кремния в силикоалюминии) извлечение алюминия так же, как и кремния, не зависит от формы углерода в шихте: SiC или Ссвоб. шихты . Оксид алюминия восстанавливается по суммарной реакции (2).

Аl2 O3 + 3SiC = 2Al + 3Si + 3СО (2)

При соотношении в шихтах Al:Si > 2:3 свободный углерод, оставшийся после завершения стадии образования SiC, может образовывать с Аl2 O3 оксикарбидные "комплексы" (моно и -тетра оксикарбиды алюминия Al2 OC и Al4 O4 C) по реакциям (3 и 4).

Al2 O3 + 3C = Al2 OC + 2CO (3)

Al2 OC + Al2 O3 = Al4 O4 C (4)

Эти "комплексы" плавятся при более низких температурах (1840-1950°С) по сравнению с Аl2 O3 (~2050°С) с соответствующим понижением реакционной способности углерода, перешедшего из шихты в оксикарбидный расплав. Этим объясняется наклон кривой 4 на рис. 1. В опытах с алюмосиликатными шихтами(кривые 1-3 ) степень образования этих "комплексов" уменьшалась из-за блокировки поверхности Ссвоб. шихты образующимися по реакции (1) частицами SiC.

■ Исследованиями на печи Таммана (таблица 1) шихты промышленного состава, включающей каолин и ДСК в соотношении по массе 65:35, глинозем и восстановитель: газовый уголь и нефтяной кокс в соотношении 70:30 по нелетучему углероду при дозировке Снлт. 95% от стехиометрии (расчетное содержание Al в силикоалюминии 63% масс.) установлено:

▪ С увеличением времени выдержки шихты при 1600°С восстановимость шихты уменьшается, что объясняется возрастанием степени образования SiC по реакции (1). Оставшийся Ссвоб. шихты взаимодействует с Аl2 O3 с образованием оксикарбидных "ком-плексов" алюминия, составляющих жидкую фазу шлаков. Основным поставщиком этой фазы в руднотермических печах являются участки с низкими температурами (межэлектродные или межтигельные зоны), что подтверждается практикой работы этих печей. Количество шлаков при выплавке силикоалюминия на однофазной одноэлектродной и двухэлектродной печах, а также трехфазной трехэлектродной печи по числу этих зон на 1 электрод составляет, соответственно, ~8-10, 17-20 и 25-30%.

▪ В случае "передержки" шихты при 2000о С восстановимость снижается из-за взаимодействия восстановленного металла с углеродом тигля (в плавке на печах с углеродом подины или электрода).

■ Исследованиями свойств (рис. 2, а, б, в, г) шихт с использованием каолина и глинозема и смеси предварительно прокаленного газового угля и нефтяного кокса в соотношении 70:30 по Снлт с дозировкой 95% масс. против стехиометрии с расчетным содержа-

Рис. 2 – Изменение от температуры прокалки: состава газового

угля (а, 1–зола, 2 –летучие компоненты, 3 –нелетучий углерод),

УЭС угля (б) и шихты (в), восстановимости шихты (г)

нием 60% Alв силикоалюминии определено:

Летучий углерод практически не участвует в восстановлении оксидов алюминия и кремния. Показатели восстановимости и УЭС шихты близки к максимальным значениям при содержании летучих компонентов в угле всего лишь ~1% (рис. 2, а, в, г). Такое содержание летучих компонентов получено в газовом угле, прокаленном при ~1000о С, т.е. до начала протекания восстановительных реакций.

▪ Содержание золы (рис. 2, а) в прокаленных углях растет с

увеличением температуры прокалки до 1000-1300°С, а при дальнейшем повышении температуры несколько уменьшается, что можно объяснить началом восстановления оксидов собственной золы.

▪ Снижение восстановимости и УЭС шихты (рис. 2, в, г) с повышением температуры прокалки углей выше 1000°С происходит в результате упорядочения структуры углерода и понижения его химической активности (рис. 2, б) при графитизации.

■ Исследованиями на лабораторной печи со сбором отходящего газа (рис. 3 и 4) шихт из каолина и ДСК в массовом соотношении 65:35, глинозема, а также непрокаленного и предварительно прокаленного в течение 2-х часов при температурах 800 и 1200°С без доступа воздуха восстановителя, включающего газовый уголь и нефтяной кокс при различном соотношении по Снлт. при дозировке 95% против стехиометрии с расчетным содержанием Al 63% масс показано:

К-во Просмотров: 211
Бесплатно скачать Реферат: Разработка технологии электротермического получения силикоалюминия с использованием малозольных восстановителей