Реферат: Развитие аналитической геометрии

r 2 (x 2 + у 2 )2 n -1 = x 4 n (n = 0,1, 2,...)

Декарт не привел ни в общем виде, ни для частных значений п.

Кинематическое образование линий являлось отправным пунктом геометрии Декарта и применяется в ней неоднократно. Конечно, данная им при этом кинематическая характеристика геометрических линий как кривых, описываемых одним или несколькими непрерывными движения­ми, последовательно определяющими друг друга, не вполне отчетлива, так же как и заявление, что для проведения всех таких линий «нужно только то предположение, что две или несколько линий можно переме­щать вдоль друг друга и что их пересечения образуют другие линии»[8] . Но в этих утверждениях, по сути дела, Декарт предвосхитил уже упоми­навшуюся важную теорему английского ученого А. Кемпе (1876), со­гласно которой посредством плоских шарнирных механизмов можно опи­сать дуги любых алгебраических кривых и нельзя описать ни одной транс­цендентной. Свой кинематический способ деления линий на геометриче­ские и механические Декарт тотчас облекает в более ясную аналитиче­скую форму и здесь же предлагает классификацию первых. «Все точки линий,— пишет он,— которые можно назвать геометрическими, т. е. которые подходят под какую-либо точную и определенную меру, обяза­тельно находятся в некотором отношении ко всем точкам прямой линии, которое может быть выражено некоторым уравнением, одним и тем же для всех точек данной линии»[9] . В этом поистине замечательном по глубине месте своего сочинения Декарт вводит и метод прямолинейных координат и понятие об уравнении кривой, а вместе с тем понятие о функции как аналитическом выражении, составленном из «неопределенных» отрезков x и у. Несколько перед тем Декарт объяснил, как описывать кривую или, вернее, строить любое число ее точек, вычисляя значения х по данным значениям у , первой координатой у него служила у .

В 1684 г. Лейбниц назвал геометрические кривые Декарта алгебраи­ческими, а механические — трансцендентными, мотивируя отказ от тер­минологии Декарта тем, что и механические линии не подлежат исклю­чению из геометрии.

Непосредственно за изложенными общими соображениями Декарт приводит первую общую классификацию алгебраических кривых в зави­симости от степени их уравнений, отнеся к роду п кривые с уравнениями степени 2п — 1 и 2п. Классификация требовалась прежде всего для все­общей математики Декарта (стр. 30), а также была нужна в аналитиче­ской геометрии. Предложенное Декартом разделение кривых по родам, себя не оправдавшее, мотивировалось тем, что, по его мнению, кривые с уравнением степени 2п вообще не сложнее, чем с уравнением степени 2п — 1. Все трудности, связанные с четвертой степенью, писал он, при­водятся к третьей, а трудности, связанные с шестой степенью,— к пятой и т. д. Общепринятой классификацией плоских кривых по порядкам мы обязаны Ньютону.

Но классификация кривых в прямолинейных координатах по родам или порядкам имеет смысл, если род или порядок кривой не зависит от выбора координатной системы. Это было Декарту ясно, и он, правда ми­моходом, но вполне отчетливо, сформулировал фундаментальное предло­жение об инвариантности рода кривой при замене одной системы прямо­линейных координат другой: «Действительно, хотя для получения более короткого и удобного уравнения и нужен весьма тщательный выбор, но все же, какими бы прямую и точку ни взяли, всегда можно сделать так, что­бы линия оказалась того же самого рода: это легко доказать»[10] . Впрочем, доказательство не приводится, да и формулы линейного преобразования координат у Декарта еще отсутствовали.

В качестве первого примера Декарт выводит уравнение линии ЕС , описанной точкой пересечения линейки GL и неопределенно продолжен­ной стороны CNK плоской прямолинейной фигуры NKL , сторона кото­рой KL движется вдоль данной прямой ВА , заставляя вращаться вокруг точки G линейку, неизменно проходящую при этом через точку L . При­няв GA , перпендикуляр к ВА , равным а , KL = b ,NL = с , выбрав АВ за ось х и точку А за начало, Декарт обозначает «неопределенные и неизве­стные величины» СВ = у , ВА = х. Тогда на основании подобия тре­угольников СВК и NLK , с одной стороны, и CBL и GAL с другой, быстро выводится уравнение линии ECG

уу = су -ху + ау - ас ,

так что эта линия первого рода и, как указывает без доказательства Де­карт, гипербола (пример этот подробно разобрали комментаторы латинского издания «Геометрии»).

Страница первого издания «Геометрии» Р. Декарта (1637):

начало вывода уравнения линии ЕС

Заменяя прямую CNK другими линиями, можно получать таким образом бесконечное множество кривых. Так, если CNK есть окружность с центром L , то будет описана конхоида (не­сомненно, что прием Декарта является как раз обобщением античного определения конхоиды), а если CNK есть парабола с диаметром KB , то возникает кривая второго рода, именно та, которую Ньютон впослед­ствии назвал трезубцем (ср. далее стр. 108). Вообще, заявляет Декарт, если образующая кривая имеет род п, то описанная линия будет рода п -)- 1. Это одна из немногих ошибок Декарта, который не довел, видимо, до конца легкие, по его собственным словам, вычисления. На самом деле, если в подвижной системе координат СВ = у ,BL = х' , уравнение линии CNK есть

f (x' ,y ) = 0,

то кривая ECG имеет в прежних координатах уравнение

Неточность Декарта показал на частном примере еще Ферма. В рассмотренном только что примере нарисованы две взаимно перпен­дикулярные координатные оси, хотя и не в обычном для нас положении. Однако чаще всего Декарт, так же как Ферма и ближайшие поколения их последователей, чертил только одну ось с начальной точкой и указывал направление других координат, вообще говоря наклонных. Отрицатель­ные абсциссы lie рассматривались, что иногда приводило к неточным или неполным чертежам. Эти замечания не относятся к Ньютону или Лейбницу. но правильное различение знаков координат и применение обеих осей стало обычным делом уже в XVIII в.

Силу своего метода Декарт затем демонстрирует на предложенной ему Я. Гоолем задаче Паппа о геометрическом месте к 2п или 2n - 1 прямым, которое определяется следующим образом: даны 2п (или 2n - 1) прямых, требуется найти геометрическое место таких точек, чтобы произведение отрезков, приведенных от них под данными углами к п из этих прямых, находилось в данном отношении к произведению аналогичных отрезков. проведенных к остальным п (или n - 1) прямым. Древние знали, что при п = 2 геометрическое место есть коническое сечение, но не оставили ана­лиза и этого случая: случай же n > 2 остался нерассмотренным. Если мы запишем уравнение прямых в виде а k х + b k у + ck = 0, то длины прове­денных к ним отрезков dk пропорциональны левым частям этих уравне­ний, и для нас отсюда ясно, что уравнение места будет, вообще говоря, кривой порядка п. Декарт, получив выражения для dk в выбранной им косоугольной координатной системе из геометрических соображений, при­ходит к тому же общему результату. Более подробно он рассмотрел слу­чаи n = 2 и п = 3. Это прежде всего место к трем или четырем прямым, исследование которого дает ему повод исследовать уравнение второго порядка, весьма общего, хотя и не самого общего вида. Пусть данные пря­мые суть АВ ,AD ,EF и GH , причем углы, образуемые с ними отрезками СВ ,CD ,CF и СH , проведенными из точек С искомого геометрического ме­ста, определяемого условием CB - - CF = CD - CH , известны (рис. 8). Де­карт принимает одну из данных и одну из проведенных линий, именно АВ и ВС , за оси А В = х , ВС = у и обозначает данные длины отрезков ЕА = k ,AG = l . Данными являются также углы треугольников на рис. 8, а значит, отношения их сторон

АВ : BR = z : b ,CR : CD = z : с и т. д., где z , b , с , ... суть данные отрезки (Декарт не вводит синусы углов). После этого нее нужные отрезки выражаются через x , у , z ,b , с , ..., k ,l , линейно относительно х и у :

CB = y , ,

а условие CB · CF = CD · CH выражается уравнением второй степени без свободного члена, решение которого относительно у , после введения не­которых сокращенных обозначений, дает

Однородность полученного уравнения объясняется принятыми для отно­шений сторон выражениями и, в сущности, не была в глазах Декарта обя­зательной (ср. стр. 42), но представляла в данном случае то удобство, что в принципе позволяла сразу строить одни отрезки по другим. В приводи­мом несколько далее числовом примере однородность относительно бук­венных величин не соблюдается в отличие от примера Ферма, в алгебре примыкавшего к Виету (ср. стр. 102).

Опираясь на теоремы I книги «Конических сечений» Аполлония, Де­карт показывает, что полученное уравнение принадлежит коническому сечению, а в особых случаях, когда радикал обращается в нуль или ко­рень извлекается нацело, оказывается прямой линией: в самостоятельном виде уравнение прямой отсутствует и о «вырождении» кривой второго порядка в пару прямых ничего не говорится. В ходе анализа выясняется, при каких знаках коэффициентов получаются парабола, гипербола и эл­липс, в частности окружность, и определяются положение и форма кони­ческого сечения — в случае параболы

вершина, диаметр и «прямая сторона»[11] , а в случае центральных кривых—центр вершины, «прямая сто­рона» и диаметры. Здесь же Декарт разбирает числовой пример, беря ЕА = 3, AG = 5, АВ = BR и т. д., а угол ABR равным 60°, так что урав­нение есть уу = 2у — ху + 5xхх : кривая при этом оказывается окруж­ностью. Общее заключение гласит, что к первому роду принадлежат круг, парабола, гипербола и эллипс. Прямая не упоминается, — ее при­надлежность к первому роду подчеркнул Дебон, который рассмотрел так­же случай, когда в уравнении нет членов с х 2 и у 2 , но есть ху , оставленный Декартом в стороне.

Вслед за тем Декарт изучает еще место к пяти прямым и специально случай, в котором четыре прямые суть эквидистанты АВ ,IH ,ED ,GF ,а пятая GA к ним перпендикулярна (рис. 9), причем CF · CD · CH = СВ·СМ·а , где а — расстояние между соседними эквидистантами. Здесь появляется первое в истории аналитической геометрии уравнение кривой третьего порядка. Обозначив СВ = у , СМ = х , Декарт находит

у 3 2ay 2 — аау + 2а 3 = аху ,

т. е. уравнение трезубца (см. стр. 106), и показывает, что эта кривая CEG может быть, как он утверждал ранее, описана пересечением параболы CKN , диаметр которой KL = а движется по АВ , и линейки GL , вра­щающейся вокруг точки G и постоянно проходящей через точку L[12] . Он не упускает из виду, что искомым местом служит также кривая NIo , опи­санная пересечением GL с другой ветвью параболы (HKN ), можно взять и сопряженные линии cEGc и п I 0 , получающиеся, если подвижная парабола обращена вершиной в другую сторону. Чертеж в «Геометрии» недо­статочно отчетливо изображает вторую часть трезубца, который состоит из двух отдельных линий, имеющих каждая — в терминологии Ньютона — гиперболическую ветвь с асимптотой АВ и параболическую ветвь, ли­шенную асимптоты. Как и должно быть, кривая пересекает на чертеже горизонтальную ось при значениях у = — а , у = а , у = 2а , но точка перегиба у части, лежащей справа от асимптоты, не обозначена.

Большое место занимают в «Геометрии» исследование оптических овалов, рассматриваемых в биполярных координатах, и про­ведение нормалей. Вторая книга сочинения завершается краткими замечаниями о возможности распространения метода на про­странственные кривые посредством проектирования их точек на две вза­имно перпендикулярные плоскости и заявлением: «Я полагаю теперь, что ничего не пропустил из начал, необходимых для познания кривых линий»[13] .

Конечно, в этих словах Декарта, как и в приведенной выше авторской оценке «Введения» Ферма, было несомненное преувеличение. Но действи­тельно, перед геометрией раскрывались невиданно широкие перспективы. Историки науки немало спорили о том, имелась ли у Аполлония аналити­ческая геометрия и было ли творчество Ферма и Декарта в этой области новаторским. Ответ зависит от определения термина «аналитическая гео­метрия», который, как отмечалось в другой связи, понимается по-разному. Несомненно, что оба ученых чрезвычайно многим обязаны были древним и что в саму теорию конических сечений они не внесли каких-либо новых теорем, а также не построили ее в чисто аналитическом плане. И вместе с тем Декарт и Ферма закладывали фундамент поистине новой геометрии, хотя «симптомы» Аполлония и соответствовали буквенным уравнениям кривых второго порядка.

Дело в том, что, как правильно писал Г. Цейтен, «геометрическая форма, приданная методом древних самой алгебре, была причиной многочислен­ных комбинаций между средствами и объектом геометрического исследо­вания — комбинаций, которые должны были оставаться довольно чуж­дыми аналитической геометрии, в особенности поскольку последняя стре­милась превратить геометрические проблемы целиком в задачи исчисле­ния»[14] . И до тех пор, пока средством исследования оставалась геометри­ческая алгебра, синтетическое рассмотрение неизбежно переплеталось с аналитическим, а в глазах некоторых ученых являлось принципиально господствующим. Ньютон, завершая свой вывод теоремы о том, что место к четырем прямым есть коническое сечение, писал: «Такое решение, как приведенное выше, т. е. исполняемое не с помощью исчисления, но геометри­ческим построением, и изыскивалось древними»[15] . Между тем после Ферма и Декарта и благодаря им начинает развиваться чисто аналитический ме­тод исследования геометрических образов, в принципе не нуждающийся в обращении к геометрическим построениям и опирающийся лишь на ал­гебраическое исчисление. Такова общая, идейная сторона дела. К этому следует добавить, что новая алгебра давала средства изучения кривых любого порядка, первые примеры чего имеются уже у Декарта[16] (такое применение геометрической алгебры было невозможно), что система коор­динат становилась свободной от связи с теми или иными исключительными точками и направлениями (например, диаметром и вершиной конического сечения), что приобретали право на существование отрицательные коор­динаты и т. д. Мы не говорим уже о том, что в новой геометрии впервые нашло явное выражение понятие о функции, заданной формулой.

В свете сказанного второстепенное значение имеют недостатки, при­сущие аналитической геометрии Декарта и Ферма, пользовавшегося к то­му же менее совершенной алгеброй Виета, например не разработанность вопроса об отрицательных координатах или отсутствие на большинстве чертежей второй оси, а также то обстоятельство, что оба они ограничились немногими примерами приложения нового метода.

Современники восприняли новую геометрию с энтузиазмом. Уже в ла­тинских изданиях «Геометрии» Декарта мы находим отдельные, заслу­живающие упоминания вещи.


[1] В первом издаиии этот весьма распространенный в XVII в. труд назывался «Основы арифметики в числах и видах» (Arithmeticaeinnumerisetspeciebusinstitutio).

[2] Еще в переводе арабского трактата Ибн ал-Хайсама о параболических зеркалах, сделанном в XII в., употребляется оборот lineasecunduinordinem, т. е. «линия по порядку». Н. Орем в середине XIV в. писал о перпендикулярно приложенных отрез­ках — perpendiculariterapplicatae.

К-во Просмотров: 303
Бесплатно скачать Реферат: Развитие аналитической геометрии