Реферат: Развитие математики в России. Петербург в XVIII-XIX столетиях
Какой же вывод вытекает из работ Лобачевского прежде всего относительно Евклидова постулата? Если бы постулат удалось доказать, то это свидетельствовало бы, что противоположное постулату допущение несовместимо с остальными посылками Евклида и находится с ними в противоречии. Если же такого противоречия нет, если противоположное допущение в совокупности с остальными постулатами Евклида приводит к системе логически столь же правильной, что и геометрия Евклида, то отсюда следует, что доказать знаменитый постулат невозможно. Конечно, чтобы это утверждение не вызывало никаких сомнений, его нужно тщательно обосновать, что в наше время уже осуществлено.
Когда скончался Гаусс и была опубликована его переписка с друзьями, то на работы Лобачевского и Болье ввиду содержащихся о них восторженных отзывов было обращено внимание. Перед читателями, вникшими в труды этих гениальных людей, открылся целый новый мир, произведший полный переворот в наших воззрениях на сущность геометрических аксиом, на источники их познания, на методы обоснования геометрии. Литература по этому предмету быстро разрослась и трудами талантливых учеников и последователей Лобачевского и Болье те темные стороны вопроса, которые так затрудняли понимание новых идей, были выяснены, а результаты этих исследований широко развиты.
Сам Лобачевский не дожил до признания своих идей. Он скончался в 1856 году. Перед самой смертью, уже потеряв зрание, он еще раз продиктовал новую обработку своих идей под заголовком "Пангеометрия".
В первой половине XIX столетия не выработалась приемственная школа русских математиков, но молодая русская математика уже в первый период своего развития дала выдающихся представителей в различных отраслях этой трудной науки, один из которых уже в первой половине столетия вписал свое имя в иторию человеческой мысли.
Заключение
В XVIII-XIX веках русскими и европейскими математиками, связавшими свою жизнь с Россией,: братьями Бернулли, Эйлером, Остроградским, Лабочевским - был внесн значительный вклад в развитие отечественной и мировой математики. Эти ученые, жившие в Санкт - Петербурге или неоднократно приезжавшие с докладами на заседание Академии наук, принесли славу нашему великому городу.
Введение. ...................................................................................................................
Гениальные иностранцы. ........................................................................................
Даниил Бернулли...................................................................................................
Леонард Эйлер.......................................................................................................
Первые русские математики. ..................................................................................
Остроградский и Буняковский..........................................................................
Лобачевский. ..........................................................................................................
Заключение .............................................................................................................
Список используемой литературы.
1. Творцы математики: Предшественники соврем. метематики. Пособие для учителей. Пер. с англ. В. Н. Тросникова, С. Н. Киро, Н. С. Киро /Под ред. И с доп. С. Н. Киро. - М.: Просвещение, 1979.
2. Математическая смекалка. - 9-е изд., стер. - М.: Наука. Гл. ред. физ. - мат. лит., 1991.
3. Советский энциклопедический словарь/Гл. ред. А. М. Прохоров. - 3-е изд. - М.: Сов. энциклопедия, 1984
4. Математическая шкатулка. - 3-е изд., - М.: Просвещение, 1964
5. Математическая энциклопедия. - 2-е изд., - М.: Наука, 1993
[AP1]