Реферат: Развитие техники от простейших орудий труда до космонавтики
Египетские и греческие колонны строились высотой не более девяти диаметров. Сейчас мы знаем, что за этим пределом начинается опасность продольного изгиба. Древние архитекторы соблюдали это условие. По-видимому, тоже не случайно.
Теоретические труды Ктесибия до нас не дошли, но сведения о его изобретениях содержатся в сочинениях других авторов – Филон, Витрувия, Афинея, Плиния и Герона. Из этих источников мы узнаём ,что Ктесибий был изобретателем двух цилиндрового водяного насоса, снабжённого всасывающими и нагнетательными клапанами; водяного органа, управление которым осуществлялось с помощью сжатого воздуха; водяных часов, отличавшихся от древней клепсидры тем, что в них имелся поплавок, движение которого передавалось фигурке, указывавшей время на специальной шкале, и некоторых других устройств. В военных метательных машинах, изобретённых Ктесибием, использовалась сила сжатого воздуха.
Великий учёный Архимед (III в. до н.э.) был и гениальным механиком. Историки пишут о том, что он был кем-то вроде военного инженера (на самом деле достижения Архимеда в области инженерного дела не сводились к одним лишь военным машинам) при дворе сиракузского царя Гиерона, который, кстати, приходился ему родственником. Подобно Платону, он считал недостойным философа использование науки в практических целях и тем не менее изобрёл несколько исключительно полезных машин. Из них наиболее известен «архимедов винт», который широко применялся для удаления воды из корабельных трюмов и для дренажа полей в Египте после ежегодных паводков. Архимед изобрёл несколько катапульт, благодаря которым длительное время удавалось отражать осаду Сиракуз римским флотом.
В математике Архимед дошёл до изобретения интегрального исчисления, намного опередив своё время. Он проверил и создал теорию пяти механизмов, известных в его время и именуемых «простые механизмы»: рычаг клин, блок, бесконечный винт и лебёдка. Впрочем, бесконечный винт, возможно, он не изобрёл, а усовершенствовал гидравлический винт, который служил египтянам для осушения болот. Сегодня «архимедов винт» используется, например, в обыкновенной мясорубке. Изобретение бесконечного винта привело Архимеда к другому важному изобретению, пережившему тысячелетия, а именно к изобретению болта, сконструированного из винта и гайки.
В своей «Механике» Архимед дал математическое определение центров тяжести простых тел и равновесия системы рычагов.
Есть легенда, что Архимед, фокусируя слабые солнечные лучи с помощью зеркал, сжёг римский флот, осаждавший Сиракузы. Во всяком случае, он оставил книгу «О зажигательных стёклах». От несохранившихся трактатов Архимеда дошёл ряд фрагментов, цитируемых Героном (в «Механике»), Паппом (в «Механической библиотеке») и другими авторами. Герон приводит длинный отрывок из раннего сочинения Архимеда – «Книги опор». Исследователи отмечают, что в нём ещё нет строгости, присущей зрелым трудам великого сиракузца, и содержится ряд ошибок, относящихся к распределению опорных реакций и показывающих, что в период написания этой книги Архимед ещё не знал, что вес тела можно считать сосредоточенным в его центре тяжести.
Последним, возможно, предсмертным трудом Архимеда был трактат «О плавающих телах», заложивший математические основы новой науки – гидростатики. Не исключено, что его написание стимулировано популярной историей с короной царя Гиерона.
Таким образом, средства производства постепенно превращались, по словам К. Маркса «из орудия … в машину» (т.23, с. 382).
В XII в. понятие «инженер» уже бытовало в Западной Европе. Правда, оно ещё обозначало строителя военных машин и фортификаций (т.е. специалиста, которого в эпоху эллинизма называли «механиком»), так как все технические средства по части ведения военных операций и обороны назывались «ingenia». С XV века в Италии инженерами называют также строителей каналов.
Достижения технической мысли в эпоху эллинизма явились основой для дальнейшего развития материально-технической культуры человечества особенно в эпоху Возрождения.
Возрождение в истории культуры стран Западной и Центральной Европы эпоха, переходная от средневековой культуры к культуре нового времени (приблизительные хронологические границ: в Италии – 14÷16 вв., в других странах – конец 15÷16 вв.) [1, ст. «Возрождение»].
В 15 в. благодаря учёным, эмигрировавшим из Византии в Италию, были впервые переведены почти все древнегреческие поэты (в том числе Гомер) и философы (в том числе большинство диалогов Платона). Тексты античных произведений, известных и средневековой Европе, уточнялись, освобождались от средневековых наслоений и ошибок и переосмысливались.
Но культура Возрождения не была простым возвращением к античной. Она её развивала и интерпретировала по-новому, исходя из новых исторических условий. Не меньшее значение, чем античное влияние, имели в культуре Возрождения связи с национальной традицией. Огромную роль в распространении античного наследия и новых, гуманистических взглядов сыграло изобретение (середина 15 в.) и распространение в странах Европы книгопечатания . В типографиях Флоренции, Венеции (Альд Мануций), Базеля (И. Фробен), Парижа (А. Этьенн), Лиона (Э. Доле), Антверпена (К. Плантен), Нюрнберга и др. печаталась античная и гуманистическая литература.
Культура Возрождения отразила в себе специфику переходной эпохи. Старое и новое нередко причудливо переплеталось в ней, представляя своеобразный, качественно новый сплав.
Эпоха Возрождения (особенно 16 в. ) отмечена крупными научными сдвигами в области естествознания. Его развитие, непосредственно связанное в этот период с запросами практики (торговля, мореплавание, строительство, военное дело и др.), зарождавшегося капиталистического производства, облегчалось первыми успехами нового, антидогматического мировоззрения. Специфической особенностью науки этой эпохи была тесная связь с искусством; процесс преодоления религиозно-мистических абстракций и догматизма средневековья протекал одновременно и в науке и в искусстве, объединяясь иногда в творчестве одной личности (особенно яркий пример — творчество Леонардо да Винчи — художника, учёного, инженера). Наиболее крупные победы естествознание одержало в области астрономии, географии, анатомии. Великие географические открытия (путешествия Х. Колумба, Васко да Гамы, Ф. Магеллана и др.) практически доказали шарообразность Земли, привели к установлению очертаний большей части суши. Открытия, означавшие революционный переворот в науке, были сделаны в середине 16 в. в области астрономии: с гелиоцентрической системы мира великого польского астронома Н. Коперника.
Ряд открытий был сделан в математике, в частности в алгебре: найдены способы решения общих уравнений 3-й и 4-й степени ( итальянские математики Дж. Кардано, С. Ферро, Н. Тарталья, Л. Феррари ), разработана современная буквенная символика (французский математик Ф. Виет), введены в употребление десятичные дроби (голландский математик и инженер С. Стевин) и др. Дальнейшее развитие получает механика (Леонардо да Винчи, Стевин и др.).
Изобретательский гений Леонардо был подкреплён обширными техническими знаниями [2]. Он знал практически все разновидности зубчатых зацеплений, кулачковые, гидравлические и винтовые механизмы, передачи с гибкими звеньями …
Он изобрёл несколько типов экскаваторов и придумал организацию земляных работ одновременно на нескольких горизонтах. Он изобрёл несколько гидравлических машин разных конструкций, в том числе тангенциальную турбину, прядильный и волочильный станки, станок для насечки напильников, приспособления для нарезки резьбы, прокатный стан, станок для свивки канатов, крутильный станок и несколько веретен, машину для шлифовки оптических стёкол, камерные шлюзы.
Некоторые из его изобретений настолько опередили своё время, что остались недоступными для техники той эпохи. Например, центробежный насос, гидравлический пресс, огнестрельное нарезное оружие. Он изобрёл также летательный аппарат тяжелее воздуха и пришёл к выводу, что такой аппарат летать без двигателя не может. В своих записных книжках и рукописях (около 7 тыс. листов) Леонардо оставил наброски изобретений, которые не могли быть поняты в его время, в частности, аэроплан, подводная лодка.
Растет объём знаний и в других областях науки [1]. Так, Великие географические открытия дали огромный запас новых фактов не только по географии, но и по геологии, ботанике, зоологии, этнографии; значительно вырос запас знаний по металлургии и минералогии, связанный с развитием горного дела ( труды немецкого учёного Г. Агриколы, итальянского учёного В. Бирингуччо), и т. д.
2. Становление экспериментальной науки и динамика развития техники
Первые успехи в развитии естественных наук, философская мысль подготовили становление экспериментальной науки и материализма 17—18 вв. Переход от ренессансной науки и философии ( с её истолкованием природы как многокачественной, живой и даже одушевлённой) к новому этапу в их развитии — к экспериментально-математическому естествознанию и механистическому материализму — совершился в научной деятельности английского философа Ф. Бэкона, итальянского учёного Г. Галилея.
Таким образом, к XVIII веку были созданы предпосылки качественно новой эпохи в развитии техники, впрочем, как и всего человечества. При производстве предметов материальной культуры люди перешли от сложных орудий труда и машин, приводимых в движение естественными силами природы (водой, ветром, ручной тягой и т.д.), к орудиям труда, действующим при помощи двигателя. Однако и здесь не обошлось без переходных форм. Например, первая изобретенная производственная машина (прядильный станок Джона Уайета в 1735 г.) приводилась в движение с помощью запряжённого осла [2].
Итак, к XVIII веку возникла проблема создания технологических машин, в первую очередь для текстильного производства. Переход к машинной технике требовал создания двигателей, не зависящих от местных источников энергии (воды, ветра).
Первым двигателем, использующим тепловую энергию топлива, была поршневая пароатмосферная машина прерывистого действия, появившаяся в конце XVII – начале XVIII вв.: проекты французского физика Д. Папена и английского механика Т. Севери, усовершенствованные в дальнейшем Т. Ньюкоменом в Англии и М. Тривальдом в Швеции. В 1760 г. хозяин прядильной мануфактуры в Серпейске Калужской губернии Родион Глинков построил 30-веретёную машину для прядения льна с приводом от водяного колеса и мотальную машину, заменившую 10 человек.
Проект универсального парового двигателя был предложен в 1763 г. механиком Колывано-Воскресенских заводов Иваном Ивановичем Ползуновым, который сдвоил в своей машине цилиндры, получив двигатель непрерывного действия.
Вполне развитую форму универсальный тепловой двигатель получил в 1784 г. в паровой машине английского изобретателя механика Джеймса Уатта. В 1785 г. паровая машина впервые была поставлена для привода текстильного предприятия, а к концу века в Англии и Ирландии работало уже более трёхсот машин. В России в 1798-1799 гг. паровые машины были установлены на Александровской мануфактуре в Петербурге и на Гумешевском заводе на Урале.
Во второй половине XIX в. в процессе дальнейшего совершенствования энергетической базы производства были созданы два новых типа теплового двигателя: паровая турбина и двигатель внутреннего сгорания. Параллельно с развитием тепловых двигателей совершенствовалась конструкция первых гидравлических двигателей, особенно гидротурбин: проекты французского инженера Б. Фурнерона, американского А. Пелтона, австрийского В. Карплана. Создание мощных гидротурбин позволило строить гидроэнергетические агрегаты большой мощности (до 600 МВт) и создавать крупные ГЭС в местностях, где имеются большие реки, водопады.
Важнейшие сдвиги в развитии энергетической базы промышленного производства были связаны с изобретением двигателей электрических. В 1831 г. английский физик М. Фарадей открыл явление электромагнитной индукции, а в 1834 русский учёный Якоби создал первый электрический двигатель постоянного тока, пригодный для практических целей. В 1888-1889 гг. инженер М.О. Доливо-Добровольский создал трёхфазную короткозамкнутую асинхронную электрическую машину.