Реферат: Развитие в России работ в области нанотехнологий

повышение эффективности производства;

переориентация российского экспорта с, в основном, сырьевых ресурсов на конечную высокотехнологичную продукцию и услуги путем внедрения наноматериалов и нанотехнологий в технологические процессы российских предприятий;

в сфере национальной безопасности:

обеспечение экономической и технологической безопасности на базе широкого внедрения нанотехнологий в модернизацию используемого и создание нового, более эффективного оборудования;

повышение степени безопасности государства путем широкого внедрения наносенсорики для эффективного контроля присутствия следов взрывчатых веществ, наркотиков, отравляющих веществ в условиях угроз террористических актов, техногенных катастроф и других факторов внешнего воздействия;

совершенствование имеющегося вооружения и создание новое военной и специальной техники;

в социальной сфере:

повышение качественных показателей жизни и экологической безопасности населения путем внедрения в практическое здравоохранение систем диагностики, базирующихся на нанотехнологиях и предназначенных для раннего обнаружения тяжелых и хронических заболеваний (ранняя диагностика рака, гепатита, сердечно-сосудистых заболеваний, аллергии), профилактики и лечения, а также развитие производства новых препаративных форм лекарств и витаминов;

создание новых рабочих мест для высококвалифицированного персонала инновационных предприятии, создающих продукцию с использованием нанотехнологий;

в сфере образования и науки:

развитие фундаментальных представлений о новых явлениях, структуре и свойствах наноматериалов;

формирование научного сообщества, подготовка и переподготовка кадров, нацеленных на решение научных, технологических и производственных проблем нанотехнологий, создание наноматериалов и наносистемной техники, с достижением на этой основе мирового уровня в фундаментальной и прикладной науках;

распространение знаний в области нанотехнологий, наноматериалов и наносистемной техники.

Эффективное достижение намеченных целей потребует системного подхода к решению целого ряда взаимоувязанных задач, основными из которых являются:

координация работ в области создания и применения нанотехнологий, наноматериалов и наносистемной техники;

создание научно-технической и организационно-финансовой базы, позволяющей сохранить и развивать имеющийся в России приоритетный задел в исследованиях и применении нанотехнологий; развитие бюджетных и внебюджетных фондов, поощряющих и развивающих исследования в области наноматериалов и нанотехнологий и стимулирующих вклады инвесторов;

формирование инфраструктуры для организации эффективных фундаментальных исследований, поиска возможных применений их результатов, развития новых нанотехнологий и их быстрой коммерциализации;

поддержка межотраслевого сотрудничества в области создания наноматериалов и развития нанотехнологий;

обеспечение заинтересованности в решении научных, технологических и производственных проблем развития нанотехнологий и наноматериалов путем либерализации налоговой политики, оптимизации финансовой политики; создание системы защиты интеллектуальной собственности;

разработка и внедрение новых подходов к обучению специалистов в области нанотехнологий.

Основные направления развития нанотехнологий в России

Наиболее значительные практические результаты могут быть достигнуты в следующих областях:

в создании твердотельных поверхностных и многослойных наноструктур с заданным электронным спектром и необходимыми электрическими, оптическими, магнитными и другими свойствами с помощью конструирования их на атомном уровне (например, средствами зонной инженерии и инженерии волновых функций) и использования современных высоких технологий (различные модификации молекулярно-пучковой и молекулярно-химической эпитаксии, самоорганизация, электронная литография, технологические методы туннельной микроскопии) с получением в результате принципиально новых объектов и приборов для исследований и различных приложений ‑ сверхрешетки, квантовые ямы, точки и нити, квантовые контакты, атомные кластеры, фотонные кристаллы, спин-туннельные структуры;

в экстремальной ультрафиолетовой (ЭУФ) литографии на основе использования длины волны, равной 13,5 нм, обеспечивающей помимо создания наноэлектронных суперпроизводительных вычислительных систем переход в мир атомных точностей, что неизбежно скажется на смежных областях знаний и производства;

в микроэлектромеханике, в основе которой лежит объединение поверхностной микрообработки, использующейся в микроэлектронной технологии, с объемной обработкой и применением новых наноматериалов, физических эффектов и LIGA-технологии на основе синхротронного излучения, обеспечивших прорыв в области создания микродвигателей, микророботов, микронасосов для микрофлюидики, микрооптики, сверхчувствительных сенсоров различных физических величин ‑ давления, ускорения, температуры, а также создания сверхминиатюрных устройств, способных генерировать энергию, проводить мониторинг окружающей среды, передвигаться, накапливать и передавать информацию, осуществлять определенные воздействия по заложенной программе или команде ("умная пыль", микророботы);

в конструировании молекулярных устройств (наномашин и нанодвигателей, устройств распознавания и хранения информации) и в создании наноструктур, в которых роль функциональных элементов выполняют отдельные молекулы. В перспективе это позволит использовать принципы приема и обработки информации, реализуемые в биологических объектах (молекулярная электроника);

в разнообразном применении фуллереноподобных материалов и нанотрубок, обладающих рядом особых характеристик, включая химическую стойкость, высокие прочность, жесткость, ударную вязкость, электро- и теплопроводность. В зависимости от тонких особенностей молекулярной симметрии фуллерены и нанотрубки могут быть диэлектриками, полупроводниками, обладать металлической и высокотемпературной сверхпроводимостью. Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Углеродные нанотрубки используются также в качестве игольчатых щупов сканирующих зондовых микроскопов, в дисплеях с полевой эмиссией, высокопрочных композиционных материалах, электронных устройствах, в водородной энергетике в качестве контейнеров для хранения водорода;

в создании новых классов наноматериалов и наноструктур, включая:

фотонные кристаллы, поведение света в которых сравнимо с поведением электронов в полупроводниках. На их основе возможно создание приборов с быстродействием более высоким, чем у полупроводниковых аналогов;

разупорядоченные нанокристаллические среды для лазерной генерации и получения лазерных дисплеев с более высокой яркостью (на 2-3 порядка выше, чем на обычных светодиодах) и большим углом обзора;

К-во Просмотров: 670
Бесплатно скачать Реферат: Развитие в России работ в области нанотехнологий