Реферат: Речевые технологии
Лингвистические блоки современных систем реализуют сложную модель естественного языка. Иногда она основана на математическом аппарате скрытых цепей Маркова, иногда использует последние достижения технологии нейронных сетей либо других ноу-хау. Устройство же акустических блоков подобных систем держится в строгом секрете. По некоторым признакам можно догадаться, что акустический блок некоторых систем пытается моделировать естественный слуховой аппарат.
Речевой вывод.
Речевой вывод информации из компьютера- проблема не менее важная, чем речевой ввод. Это вторая часть речевого интерфейса, без которой разговор с компьютером не может состояться. Я имею в виду прочтение вслух текстовой информации, а не проигрывание заранее записанных звуковых файлов. То есть выдачу в речевой форме заранее не известной информации.
Фактически, благодаря синтезу речи по тексту открывается еще один канал передачи данных от компьютера к человеку, аналогичный тому, какой мы имеем благодаря монитору. Конечно, трудновато было бы передать рисунок голосом. Но вот услышать электронную почту или результат поиска в базе данных в ряде случаев было бы довольно удобно, особенно если в это время взгляд занят чем-либо другим. Например, придя утром на работу в офис, вы могли бы поправлять галстуку зеркала или возвращать на место прическу (может быть, даже подкрашивать ногти ) в то время как компьютер будет читать вслух последние известия или почту. Или. например, в середине рабочего дня он может привлечь ваше внимание сообщением, что приближается время заранее назначенной деловой встречи.
С точки зрения пользователя, наиболее разумное решение проблемы синтеза речи - это включение речевых функций (в перспективе - многоязычных, с возможностями перевода) в состав операционной системы. Компьютеры будут озвучивать навигацию по меню, читать (дублировать голосом) экранные сообщения, каталоги файлов, и т. д. Важное замечанием пользователь должен иметь достаточные возможности по настройке голоса компьютера, в частности, при желании, суметь выключить голос совсем.
Вышеупомянутые функции и сейчас были бы не лишними для лиц, имеющих проблемы со зрением. Для всех остальных они создадут новое измерение удобства пользования компьютером и значительно снизят нагрузку на нервную систему и на зрение. По моему мнению, сейчас не стоит вопрос, нужны синтезаторы речи в персональных компьютерах или нет. Вопрос в другом - когда они будут установлены на каждом компьютере. Осталось ждать, может быть, год или два.
Методы синтеза речи
Теперь, после оптимистического описания ближайшего будущего давайте обратимся собственно к технологии синтеза речи. Рассмотрим какой-нибудь хотя бы минимально осмысленный текст, например, эту статью. Текст состоит из слов, разделенных пробелами и знаками препинания. Произнесение слов зависит от их расположения в предложении, а интонация фразы - от знаков препинания. Более того, довольно часто и от типа применяемой грамматической конструкции: в ряде случаев при произнесении текста слышится явная пауза, хотя какие-либо знаки препинания отсутствуют. Наконец, произнесение зависит и от смысла слова! Сравните, например, выбор одного из вариантов за' мок» или «замо'к» для одного и того же слова «замок».
Обобщенная функциональная система синтеза
Структура идеализированной системы автоматического синтеза речи может быть представлена блок- схемой, изображенной на рис.1.
Ввод текста
Блоки лингвистической Определение Исправление
Обработки языка текста ошибок
Подготовка текста входного текста
к озвучиванию
Нормализация текста
Лингвистический анализ
Формирование Фонемный транскриптор
Просодических Приведение фонем
характеристик к единицам синтеза
Озвучивание Формирование управляющей информации
Получение звукового сигнала
Звук
Она не описывает ни одну из существующих реально систем, но содержит компоненты, которые можно обнаружить во многих системах.
Модуль лингвистической обработки
Прежде всего, текст, подлежащий прочтению, поступает в модуль лингвистической обработки. В нем производится определение языка , а также отфильтровываются не подлежащие произнесению символы. В некоторых случаях используются спелчекеры (модули исправления орфографических и пунктуационных ошибок). Затем происходит нормализация текста, то есть осуществляется разделение введенного текста на слова и остальные последовательности символов.Все знаки пунктуации очень информативны.
Для озвучивания цифр разрабатываются специальные подблоки. Преобразование цифр в последовательности слов является относительно легкой задачей, но цифры имеющие разное значение и функцию, произносятся по-разному.
Лингвистический анализ
После процедуры нормализации каждому слову текста необходимо приписать сведения о его произношении, то есть превратить в цепочку фонем или, иначе говоря, создать его фонемную транскрипцию. Во многих языках, в том числе и в русском, существуют достаточно регулярные правила чтения - правила соответствия между буквами и фонемами (звуками), которые, однако могут требовать предварительной расстановки словесных ударений. В английском языке правила чтения очень нерегулярны, и задача данного блока для английского синтеза тем самым усложняется. В любом случае при определении произношения имен собственных, заимствований, новых слов сокращений и аббревиатур возникают серьезные проблемы. Просто хранить транскрипцию для всех слов языка не представляется возможным из-за большого объема словаря и контекстных изменении произношения одного и того же слова во фразе.
Кроме того, следует корректно рассматривать случаи графической омонимии: одна и та же последовательность буквенных символов в различных контекстах порой представляет два различных слова/словоформы и читается по- разному (ср. выше приведенный
пример слова «замок»). Часто удается решить проблему неоднозначности такого рода путем грамматического анализа, однако иногда помогает только использование более широкой семантической информации.
Для языков с достаточно регулярными правилами чтения одним из продуктивных подходов к переводу слов в фонемы является система контекстных правил, переводящих каждую букву/буква - сочетание в ту или иную фонему, то есть автоматический фонемный транскриптор. Однако чем больше в языке исключений из правил чтения, тем хуже работает этот метод. Стандартный способ улучшения произношения системы состоит в занесении нескольких тысяч наиболее употребительных исключений в словарь. Альтернативное подходу «слово - буква-фонема» решение предполагает морфемный анализ слова и перевод в фонемы морфов (то есть значимых частей слова: приставок, корней, суффиксов и окончаний). Однако в связи с разными пограничными явлениями на стыках морфов разложение на эти элементы представляет собой значительные трудности. В то же время для языков с богатой морфологией, например, для русского. словарь морфов был бы компактнее. Морфемный анализ удобен еще и потому, что с его помощью можно определять принадлежность слов к частям речи, что очень важно для грамматического анализа текста и задания его просодических характеристик. В английских системах синтеза морфемный анализ был реализован в системе M iTalk, для которой процент ошибок транскриптора составляет 5%.