Реферат: Регенерация азотной и серной кислоты
Серная кислота, постепенно насыщаясь водой, стекает по царгам вниз. H2 SO4 , контактируя с нитрозными газами от разложившейся HNO3 образует нитрозилсерную кислоту. С 20 по 22 царги (в зоне гидролиза) при температуре H2 SO4 150-160 О С происходит гидролиз нитрозилсерной кислоты.
Слабая 68-70% серная кислота с долей оксидов не более 0,003%, получаемая в процессе гидролиза из 22 царги колонны с t=160-170 О С, перекачивается в отделение концентрирования серной кислоты.
Дистилляция HNO3 из отработанных кислот и ее концентрирование сопровождается выделением нитрозных газов. Это приводит не только к значительным потерям HNO3 , но и к загрязнению окружающей среды. Поэтому после конденсатора (10) несконденсировавшиесяя пары HNO3 направляются вентилятором (24) в поглотительные башни (20-22), орошаемые кислотами различных концентраций.
У каждого абсорбера установлены циркуляционные насосы (31), которые из нижней части каждого абсорбера через холодильники (23) подают кислоту на орошение, причем концентрация орошающей кислоты последовательно увеличивается от колонны (22) к (20). Вода для орошения абсорбционной системы подается в последний по ходу абсорбер.
Охлаждение циркулирующей кислоты необходимо потому, что при взаимодействии ее в башне с окислами азота она нагревается, а поглощаются окислы азота тем лучше, чем холоднее кислота.
Температура поглощающей кислоты 25-35 О С.
Пары HNO3 и окислы азота входят в абсорбер снизу, а орошающие кислоты сверху, то есть движутся противотоками. Орошающая кислота, контактируя на поверхности насадки с нитрозными газами, стекает вниз, охлаждая окислы азота и поглощая HNO3 . Циркуляция продолжается до тех пор, пока вода, поглощая окислы азота и пара, не превратится в слабую 48-50% HNO3, поле чего она выводится из цикла, а в цикл накачивают свежую воду. Слабая HNO3 после абсорбера направляется в холодильник слабой HNO3, где охлаждается до t=35О С, затем поступает в сборник (25) и насосом (34) перекачивается в хранилище (2) концентрирования HNO3 .
В результате водной абсорбции содержание окислов азота в газах снижается до 0,1-0,3%. Для окончательной доочистки газы вентилятором (28) направляются в абсорбер (22), орошаемый крепкой H2 SO4 , поступающей по трубопроводу 6.1. После этого абсорбера газы с содержанием NOx 0,01-0,03% выбрасываются в атмосферу, а получаемая при этом H2 SO4 насосом перекачивается на склад.
Концентрирование отработанной 70% H2 SO4 осуществляется в вихревой ферросилидовой колонне (17), путем непосредственного соприкосновения горячих топочных газов и кислоты. Горячие газы, нагретые в топке (16) до t=800-900О С подаются на первую по ходу газового потока ступень колонны. Воздух в топку нагнетается воздуходувкой (32) а природный газ в топку подается по трубопроводу 5,7. Отработанная 70% серная кислота с температурой 150-170 О С из колонны ГБХ отделения денитрации насосом (29) через промежуточную емкость (14) подается на 5 ступень вихревой колонны.
Контактирование горячих газов и кислоты в колонне осуществляется в противоточном режиме. Топочные газы, поступающие на первую ступень, поднимаясь вверх, взаимодействуют в вихревом потоке с H2 SO4 и десорбируют из нее воду. H2 SO4 перетекает со ступени на ступень вниз, укрепляется и выходит из первой ступени контакта фаз в виде продукционной 91-92% H2 SO4 в холодильник (19). Из холодильника H2 SO4 насосом перекачивается в отделение денитрации в хранилище серной кислоты (3).
Горячие газы по мере движения в колонне вверх отдают тепло и насыщаются парами воды. Температура отходящих газов после верхней брызгоуловительной ступени составляет 110-130 О С.
Далее отходящие газы охлаждаются до t=60-70 О С в эжектирующем устройстве (17) колонны. Затем отходящие газы с содержанием кислых газов (0,1-0,2 г/м3 ) через трубу выбросов (30) выбрасываются в атмосферу. Концентрирование H2 SO4 на ступенях вихревой колонны осуществляется в высокотурболизированном вихревом восходящем жидкостном потоке, что позволяет интенсифицировать теплообменные процессы и повысить н?