Реферат: Релейная защита и автоматика трансформаторов
Рассмотренные выше факторы обусловливают применение защит различной сложности и с использованием разных способов обеспечения их защитоспособности и отстроенности. В простейшем случае в качестве РТД (рис, 5) используют обычное реле тока без замедления (такую защиту называют дифференциальной отсечкой). Однако защитоспособность ее мала из-за того, что защита получается весьма грубой. Для повышения чувствительности применяют реле и схемы, основные из которых (реле с промежуточными насыщающимися трансформаторами в дифференциальной цепи, реле с торможением) были рассмотрены применительно к продольной дифференциальной защите линий. В ряде случаев применяются и более сложные принципы (особенно для обеспечения отстроенности защиты от бросков тока намагничивания трансформатора).
Наибольший (расчетный) ток небаланса в дифференциальной цепи защиты может иметь место при включении трансформатора под напряжение или при внешнем к. з. Поэтому ток небаланса должен определяться в обоих случаях.
При включении трансформатора под напряжение действующее значение броска тока намагничивания Iбр.нам в первый период равно (6—8)Iт,ном . где Iт,ном — номинальный ток трансформатора.
При внешнем к. з., сопровождающемся прохождением через ТТ защиты наибольших токов к. з., ток небаланса
Iнб = I'нб + I"нб + I"’нб , (1)
где I'нб I"нб I"’нб — токи небаланса, обусловленные соответственно погрешностями ТТ, регулированием коэффициента трансформации трансформатора и неравенством токов в цепи циркуляции от различных групп ТТ.
Раскрывая выражения для отдельных составляющих тока небаланса (1), можно записать:
Iнб,расч = (kодн kапер e + DU*рег + Dfвыр )Iк,ве, max (2)
где kодн =1—коэффициент однотипности; kапер — коэффициент, учитывающий наличие апериодической составляющей в первичном токе ТТ при внешнем к. з.; e=0,1 —допустимая относительная погрешность ТТ; DU*рег =DUрег /Uном — относительный диапазон изменения напряжения на вторичной стороне трансформатора при регулировании коэффициента трансформации под нагрузкой устройством РПН; Dfвыр = (I’1 в -I’11 в )/ I’1 в — относительное значение тока небаланса в дифференциальной цепи защиты, обусловленное несоответствием расчетных и фактических коэффициентов трансформации ТТ.
Значения коэффициента kапер в (2) и коэффициента, учитывающего отстройку от броска тока намагничивания,, выбираются разными в зависимости от типа применяемого РТД. Так, для дифференциальной отсечки ток срабатывания определяется как
Iс,з = kотс Iбр,нам ;(3)
Iс,з = kотс Iнб ,расч. (4)
При этом в (4) kотс » 2, а выражение (3) с учетом некоторого затухания переходного значения Iбр,нам в течение собственного времени срабатывания электромеханического реле принимает вид:
Iс,з = (3.5¸4.5) Iт,ном (5)
и, как правило, является определяющим. Ток срабатывания реле дифференциальной токовой отсечки
Ic,p = Iс,з Ö3/K1TT, (6)
если Iс,з отнесен к стороне Y трансформатора, где вторичные обмотки 1ТТ соединены в треугольник. Дифференциальная отсечка считается приемлемой, если при двухфазном к. з. на выводах низшего напряжения трансформатора kч >= 2. Несмотря на низкую чувствительность дифференциальной отсечки ее достоинство заключается в обеспечении быстроты срабатывания при наибольших кратностях тока к. з.
При использовании реле с насыщающимися промежуточными трансформаторами РНТ выбор тока срабатывания защиты Iс,з производится по выражениям;
Iс,з = (1 ¸ 1,3I)т,ном (7)
Iс,з = kотс (I’нб + I”нб ) (8)
В (8) неучет I”нб объясняется возможностью скомпенсировать эту составляющую (в первом приближении) с помощью промежуточного насыщающегося трансформатора тока ПНТТ с несколькими первичными обмотками (рис. 5,5), когда для предотвращения попадания в реле защиты тока небаланса, обусловленного неравенством токов I’11 в и I’1 в в цепи циркуляции, производится выравнивание м. д. с. первичных обмоток w1 , w2 промежуточных трансформаторов тока так, что I’1 в w1 » I’11 в w2 , т. е. Eв,т »0 и Iр »0.
Кроме того, в (8) при расчете I’нб значение коэффициента kапер принимается равным единице.
?????????? ??????????? ???? ???????????????? ?????? ????? ???, ?????????? ???????????? ???? ????, ?????????? ?? ????????? ??????? ????. ??? ???????????????? ?????????? ?. ?. ?. ???????????? (Fc,p = const)
Рис. 5.5 Схема включения реле РНТ в дифференциальной токовой защите трансформатора
Принципиальная схема дифференциальной защиты трансформатора с РНТ (в однолинейном изображении) представлена на рис. 5,5.
Следует отметить, что определение составляющей расчетного тока небаланса I”нб обусловленной регулированием напряжения защищаемого трансформатора, и расчетных чисел витков обмоток промежуточных насыщающихся трансформаторов тока реле защиты производится с учетом одинакового максимального регулирования ±DUmax в обе стороны по отношению к среднему положению переключателя РПН, принимаемого в качестве расчетного. Такой учет регулирования напряжения соответствует определению оптимальной уставки защиты только при условии независимости сопротивления трансформатора и тока к. з. от положения переключателя РПН.
Для повышения чувствительности дифференциальной токовой защиты трансформатора предусматривают более эффективную (по сравнению с защитой с РНТ) отстройку от броска тока намагничивания трансформатора, используя: несинусоидальность броска тока намагничивания; наличие в нем апериодической слагающей; наличие провалов (ниже заданного уровня) в кривой тока Iнам,пер . В настоящее-время желательнона мощных трансформаторах устанавливать защиту с током срабатывания (0,2—0,3)Iт,ном. Дифференциальные защиты, применяемые в эксплуатации, можно разделить на три группы: с токовыми реле; с реле РНТ; с реле с торможением.
Наибольший ток срабатывания имеют защиты первой группы (дифференциальные токовые отсечки). Ток срабатывания защит второй группы значительно меньше. Наиболее распространенной разновидностью таких защит является уже рассмотренная защита с применением промежуточных насыщающихся ТТ в дифференциальной цепи. Недостатком этой защиты является, небольшое замедление из-за наличия некоторой апериодической слагающей в токе к. з.
Еще меньший ток срабатывания могут иметь зашиты третьей группы.
В настоящее время выпускается полупроводниковая дифференциальная токовая защита типа ДЗТ-21 , ток срабатывания которой равен примерно 0,3Iт,ном .
ОТКЛЮЧЕНИЕ ТРАНСФОРМАТОРОВОТ УСТРОЙСТВ РЕЛЕЙНОЙ ЗАЩИТЫ ПРИ ОТСУТСТВИИ ВЫКЛЮЧАТЕЛЯ НА СТОРОНЕ ВЫСШЕГО НАПРЯЖЕНИЯ
В настоящее время в системах электроснабжения все более широко применяются понизительные подстанции без выключателей на стороне высшего напряжения. Такие подстанции выполняются по упрощенным схемам присоединения к сети системы электроснабжения (по блочным схемам линия — трансформатор или отпайками от линий электропередачи). Для отключения повреждений в понизительных трансформаторах таких подстанций применяются следующие способы:
установка на выводах высшего напряжения трансформаторов плавких предохранителей; •» фиксация и ликвидация повреждений в трансформаторе с помощью защит, установленных на питающих концах линии;
установка короткозамыкателей, автоматически включаемых при срабатывании защит трансформатора и вызывающих к. з, на выводах высшего напряжения, которое ликвидируется затем защитами питающего конца линии;
передача отключающего сигнала по высокочастотному каналу (на базе проводов линии) или по жилам специального кабеля от защит трансформатора на отключение выключателя питающего конца линий.
Если защиты питающего конца линии не обеспечивают необходимой чувствительности при повреждениях в обмотках трансформатора и на его вывоДах низшего напряжения или имеют большие выдержки временнгто для отключения повреждения используются защиты трансформатора, Действующие в сочетании с короткозамыка-телем.
Включение короткозамыкателя осуществляется от защиты трансформатора, а отключение — вручную. В сетях с заземленной нейтралью короткозамыкатель устанавливается в одной фазе, а в сетях с изолированной нейтралью он выполняется двухполюсным с общим приводом и устанавливается на двух фазах.
После включения короткозамыкателя возникает однофазное (или двухфазное) к. з. на выводах высшего напряжения трансформатора. При этом срабатывают быстродействующие защиты, установленные на питающих концах линии. Допускается однократное АПВ питающей линии (хотя оно может вызвать увеличение размеров повреждения трансформатора). Когда к одной линии подключены ответвлениями два или несколько трансформаторов, на каждом из них дополнительно устанавливают отделители (трехполюсные разъединители с автоматическим управлением). Отключение отделителя поврежденного трансформатора осуществляется автоматически в бестоковую паузу после отключения питающей линии. После АПВ восстанавливается питание неповрежденных трансформаторов, оставшихся подключенными к линии.