Реферат: Репликация ДНК

ДНК – геликазы

ДНК геликазы - ферменты раскручивающие двуцепочечную спираль ДНК с затратой энергии гидролиза трифосфатов NTP. Образуемая одноцепочечная ДНК участвует в различных процессах, таких как репликация, рекомбинация, и репарация. ДНК геликазы необходимы для репликации, репарации, рекомбинации и транскрипции. Геликазы присутствуют во всех организмах.

ДНК-топоизомеразы

ДНК-топоизомеразы—ферменты, изменяющие степень сверхспиральности и тип сверхспирали. Путём одноцепочечного разрыва они создают шарнир, вокруг которого нереплецированный дуплекс ДНК, находящейся перед вилкой, может свободно вращаться. Это снимает механическое напряжение, возникающее при раскручивании двух цепей в репликативной вилке, что является необходимым условием для её непрерывного движения. Кроме того, топоизомеразы (типа II) обеспечивают разделение или образование катенанов - сцепленных кольцевых ДНК (образуются в результате репликации кольцевой ДНК), а также устранение узлов и спутанных клубков из длинной линейной ДНК. Существует два типа топоизомераз. Топоизомеразы типа I уменьшают число сверхвитков в ДНК на единицу за один акт. Эти топоизомеразы надрезают одну из двух цепей, в результате чего фланкирующие дуплексные области могут повернутся вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Эта реакция не требует энергии АТФ, т.к. энергия фосфодиэфирной связи сохраняется благодаря тому, что тирозиновый остаток в молекуле фермента выступает то в роли акцептора, то в роли донора фосфорильного конца разрезанной цепи.

Топоизомеразы типа II вносят временные разрывы в обе комплиментарные цепи, пропускают двухцепочечный сегмент той же самой или другой молекулы ДНК через разрыв, а затем соединяют разорванные концы. В результате за один акт снимаются два положительных или отрицательных сверхвитка. Топоизомеразы типа II тоже используют тирозиновые остатки для связывания 5¢-конца каждой разорванной цепи в то время . когда другой дуплекс проходит через место разрыва.

Праймаза

Праймаза—фермент, обладающий РНК-полимеразной активностью; служит для образования РНК-праймеров, необходимых для инициации синтеза ДНК в точке ori и дальнейшем для синтеза отстающей цепи.

4. Репликация у прокариотов и эукариотов

Комплементарность азотистых оснований в молекуле ДНК составляет главную сущность молекулярных основ наследственности и позволяет понять, как при делении клетки синтезируются тождественные молекулы ДНК.

Перед каждым удвоением хромосом и делением клетки происходит репликация (удвоение) ДНК. Репликацией называют процесс самокопирование молекулы ДНК с соблюдением порядка чередования нуклеотидов, присущего материнским комплементарным нитям.

Спиралевидная двухцепочная ДНК сначала расплетается (раскручивается) вдоль оси, водородные связи между азотистыми основаниями рвутся и цепи расходятся. Затем, к каждой цепи пристраиваются комплементарные азотистые основания и образуются две новые дочерние молекулы ДНК. Такой способ удвоения молекул, при котором каждая дочерняя молекула содержит одну материнскую и одну вновь синтезированную цепь, называют полуконсервативным.

Процесс реплдикации осуществляется с помощью ферментов, которые получили название ДНК-полимераз. Участок молекулы ДНК, в котором начали расплетаться комплементные нити, называется вилкой репликации. Она образуется у прокариот в определенной генетически детерминированной точке. В молекуле ДНК у эукариот таких точек инициации репликации («стартовых точек») бывает несколько. У эукариот процесс репликации ДНК идет неодинаково. Объясняется это тем, что полинуклеотидные цепи в молекуле ДНК антипараллельны, т. е. 5'-конец одной цепи соединяется с 3'-концом другой, и наоборот. Материнская цепь, на которой синтез идет от точки старта 5'->3' в виде сплошной линии, называется лидирующей, а вторая цепь, на которой синтез идет от 3'->5' (в противоположном направлении) отдельными фрагментами получила название запаздывающей. Синтез этой цепи сложнее синтеза лидирующей цепи. Он протекает с участием фермента лигазы отдельными фрагментами. Эти фрагменты (участки кодовой нити ДНК) содержат у эукариот 100-200, а у прокариот 1000-2000 нуклеотидов. Они получили название фрагментов Оказаки, по имени открывшего их японского ученого.

Фрагмент ДНК от одной точки начала репликации до другой точки образует единицу репликации - репликон. Репликация начинается с определенной точки (локус ori) и продолжается до тех пор, пока весь репликон не будет дуплеципрован. Молекулы ДНК прокариотических клеток содержат большое число репликонов, поэтому удваение ДНК начинается в нескольких точках. В разных репликонах удвоение может идти в разное время или одновременно.

Репликация молекул ДНК у прокариот протекает несколько иначе, чем у эукариот. У прокариот одна из нитей ДНК разрывается и один конец ее прикрепляется к клеточной мембране, а на противоположном конце происходит синтез дочерних нитей. Такой синтез дочерних нитей ДНК получил название «катящегося обруча». Репликация ДНК протекает быстро. Так, у бактерии скорость репликации составляет 30 мкм в минуту. За минуту к нитке-матрице присоединяется около 500 нуклеотидов, у вирусов за это время - около 900 нуклеотидов. У эукариот процесс репликации протекает медленно. У них дочерняя нить удлиняется на 1,5-2,5 мкм в минуту.

ДНК всех живых существ устроен одинаково. ДНК разных видов различаются коэффициентом видоспецифичности, который представляет собой отношение молекулярной суммы А + Т к молекулярной суме Г + Ц. Видоспецифичность ДНК выражается процентом или долей в ней ГЦ-пар. Коэффициент видовой специфичности разный у разных видов, но в общем наблюдается изменение ГЦ-пар от прокариот к эукариотам, а в пределах последних - от низших к более высокоорганизованным формам.

Углеводно-фосфатный остов по всей длине во всех молекулах ДНК имеет однотипную структуру и не несет генетической информации. Наследственная информация зашифрована различной последовательностью оснований. А если последовательность оснований определяет характер белков собаки, коровы, бактерии, вируса и т. д., то соответственная наследственность может передаваться из поколения в поколение.

Таким образом, в структорной организации молекулы ДНК можно выделить первичную структуру - полинуклеотидную цепь, вторичную структуру - две комплементарные друг другу полинуклеотидные цепи, соединенные водородными связями, и третичную структуру - трехмерную спираль с определенными пространственными характеристиками.

Заключение

Суть репликации ДНК заключается в том, что специальный фермент разрывает слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания.

Нужно отметить, что существует ряд объектов, репликация которых проходит по несколько иному механизму, чем было описано выше. Так, например, кольцевая ДНК митохондрий и хлоропластов реплицируется с образованием D-петель (сначала начинает реплицироваться одна цепь, в результате чего образуется структура в форме D, а после репликации более половины первой нити, начинает синтезироваться вторая); ряд плазмид и ДНК некоторых вирусов реплицируется по типу катящегося кольца и т.п. Однако принципиальная схема репликации для всех биологических объектов остаётся одной и той же.


Источники

1. Степт Г., Кэлиндар Р., Молекулярная генетика, пер. с англ. 1981

2. М. Сингер, П.Берг., Гены и геномы. 1998

3. Фаворова О.О., Сохранение ДНК в ряду поколений: Репликация ДНК. 1996

4. Ратнер В. А., Принципы организации и механизмы молекулярно-генетических процессов

5. http://www.wikipedia.ru

К-во Просмотров: 277
Бесплатно скачать Реферат: Репликация ДНК