Реферат: Решение матричных уравнений Базисный минор Ранг Действия над матрицами
Теорема 2. Матрица имеет обратную только в том случае, если она невырожденная .
Доказательство. Пусть для матрицы существует обратная , тогда . Отсюда следует, что
,
иначе единицы справа быть не может.
Теорема 3. У каждой невырожденной матрицы существует единственная обратная .
Доказательство. Пусть имеет две обратные матрицы и . Тогда
и .
Теорема 4. У каждой невырожденной квадратной матрицы существует обратная, равная .
Докажем эту теорему, вычисляя . Очевидно, что мы должны получить при этом матрицу , элементы которой находятся по формуле
.
В полученном выражении, если , то . Действительно, похоже на выражение для вычисления величины определителя. При этом элементы -ой строки умножаются на алгебраические дополнения -го столбца. Но так как эти дополнения содержат в себе -ую строку, то получается, что мы вычисляем определитель с двумя одинаковыми строками. Значит, он равен нулю.
Итак, если , то . Если же , то полученное выражение в точности соответствует формуле для вычисления определителя. Значит,
Но определяет диагональные элементы. Значит, в полученной матрице по главной диагонали стоят единицы, а остальные элементы - нули. Это единичная матрица . Следовательно, и .
Отсюда следует правило вычисления обратной матрицы:
1. находим (он должен быть не равен нулю);
2. транспонируем матрицу ;
3. заменяем каждый элемент транспонированной матрицы его алгебраическим дополнением;
4. делим каждый полученный элемент на .
3. Решение матричных уравнений
Понятие обратной матрицы дает возможность решать матричные уравнения. Пусть имеется уравнение вида , где , , , - некоторые матрицы, причем - неизвестная. Для нахождения , прежде всего, необходимо перенести вправо: . Затем, пользуясь тем, что , умножим равенство на :
.
При решении подобных уравнений необходимо учитывать, с какой стороны стоит множитель при . Если уравнение имеет вид , то
.
Если же уравнение имеет множители при с обеих сторон
(), то .
4. Базисный минор и ранг матрицы
Введя понятие линейной комбинации строк и столбцов матрицы, как это было сделано у векторов, можно ввести понятие их линейной зависимости и независимости.
Определение 1. Строки , ,..., называются линейно зависимыми, если существуют числа , не все равные нулю, такие что справедливо равенство .
Здесь 0 - нулевая строка.
Определение 2. Строки называются линейно независимыми, если их линейная комбинация обращается в ноль лишь при условии, что .