Реферат: Решение систем нелинейных алгебраических уравнений методом Ньютона
Пояснительная записка: 44 с., 14 рис, 2 таблицы, 3 источника, 4 прил.
Данный продукт представляет собой программу, позволяющую решать СНАУ:
F1(X1 , X2 , X3 )=0,5arctg(X1 +X2 )+0,2ln(1+X2 1 + X2 2 +X2 3 )-0,05(X1 X2 -X1 X3 -X2 X3 )+85X1 -20X2 +35X3 -99;
F2(X1 , X2 , X3 )=5arctg(X1 +X2 +X3 )-25,5X1 +19,5X2 -15,5X3 +15;
F3(X1 , X2 , X3 )=-0,3cos(X1 -2X2 +X3 )+0,5exp(-0,25(X2 1 +X2 2 +X2 3 -3))-44,75X1 +20,25X2 +5,25X3 +18.
Модифицированным методом Ньютона при заданных начальных условиях, где задаётся погрешность вычисления. Кроме вычисления корня уравнения, существует возможность построения графика зависимости приближений двух координат решения. При построении графика задаются промежутки и константы. Программа может использоваться как наглядное пособие для студентов высших учебных заведений.
В программе реализуются:
1) работа с BGI графикой;
2) работа с файлами.
СОДЕРЖАНИЕ
Введение
1. Постановка задачи
1.1. Цель создания программного продукта
1.2. Постановка задачи
2. Математическая модель
3. Описание и обоснование выбора метода решения
4. Обоснование выбора языка программирования
5. Описание программной реализации
1 ПОСТАНОВКА ЗАДАЧИ
1.1 Цель создания программного продукта
Главной целью работы является разработка программы способной решать СНАУ трёх переменных модифицированным методом Ньютона, что должно являться пособием для студентов высших учебных заведений в снижении ненужной нагрузки, связанной с многочисленными массивами вычислений.
1.2 Постановка задачи
В данном программном продукте необходимо реализовать решение СНАУ:
0,5arctg(X1 +X2 )+0,2ln(1+X2 1 + X2 2 +X2 3 )-0,05(X1 X2 -X1 X3 -X2 X3 )+85X1 -
-20X2 +35X3 -99;
5arctg(X1 +X2 +X3 )-25,5X1 +19,5X2 -15,5X3 +15;
-0,3cos(X1 -2X2 +X3 )+0,5exp(-0,25(X2 1 +X2 2 +X2 3 -3))-44,75X1 +20,25X2 +
+5,25X3 +18.
Начальным приближением (X0 ) должны служить X1,0 =0, X2,0 =0, X3,0 =0. Необходимо ввести точность (ξ) вычисления корня системы уравнений, ограниченную размером (не менее 0,00001). После вычислений с заданной погрешностью возникает множество приближений к корню, последнее из которых будет считаться корнем. После нахождения корня СНАУ и приближений к нему, необходимо построить график зависимости двух любых компонент решения (например, X1 и X3 ). Для этого третья компонента решения (X3 ) принимает значение константы. Необходимо указать какая функция будет участвовать в построении графика (например, F1 ), а также определить промежутки изменения обеих компонент решения (например, [X1 min ; X1 max ] и [X3 min ; X3 max ]).
2 МАТЕМЕТИЧЕСКАЯ МОДЕЛЬ
Общий вид решения системы нелинейных арифметических уравнений имеет вид:
F1 (X1 ,…,Xn )=0
…
Fn(X1 ,…,Xn )=0
, где Fi – функция n переменных.
Решением СНАУ является вектор X=(X1 ,…,Xn ), при подстановке компонент которого в систему каждое её уравнение обращается в верное равенство.
При n=3 – точка пересечения трёх поверхностей.
Модифицированный метод Ньютона – один из методов, применяющихся для нахождения корня СНАУ. Модифицированный метод Ньютона предполагает наличие начального приближения X0 . Суть метода заключается в построении последовательности точек X0 , …, Xn , сходящихся к решению.
Рекуррентная формула имеет вид:
Xk +1 =Xk +W(X0 )-1 F(Xk ), где W(X0 )-1 – обратная матрица частных производных уравнений системы уравнений (якобиан I-1 ) от начального приближения X0 , а F(Xk ) – вектор значений функций СНАУ вектора приближения к корню X, высчитанном, на предыдущем шаге.
Условием окончания выполнения приближений является шаг, на котором k-норма (в данном случае), т.е √F2 2 (Xn +1 )+ F2 2 (Xn +1 )+ F2 2 (Xn +1 ), меньше определённой погрешности (ξ):
√F2 2 (Xn +1 )+ F2 2 (Xn +1 )+ F2 2 (Xn +1 ) < ξ.
3 ОПИСАНИЕ И ОБОСНОВАНИЕ ВЫБОРА МЕТОДА РЕШЕНИЯ
--> ЧИТАТЬ ПОЛНОСТЬЮ <--