Реферат: Ряды динамики
(29)
(30)
(31)
сравнивается с при степенях свободы и уровне значимости a (обычно a = 0,05). Если >, то уравнение регрессии значимо , то есть построенная модель адекватна фактической временной тенденции.
2.4 Анализ сезонных колебаний
Уровень сезонности оценивается с помощью :
1) индексов сезонности ;
2) гармонического анализа.
Индексы сезонности показывают , во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня , вычисляемого по уравнению тенденции f(t) . При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет . Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года . Индексы сезонности – это , по либо уровень существу , относительные величины координации , когда за базу сравнения принят либо средний уровень ряда , либо уровень тенденции . Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции .
Если тренда нет или он незначителен , то для каждого месяца (квартала) индекс рассчитывается по формуле 32:
(32)
где -- уровень показателя за месяц (квартал) t ;
-- общий уровень показателя .
Как отмечалось выше , для обеспечения устойчивости показателей можно взять больший промежуток времени . В этом случае расчет производится по формулам 33 :
(33)
где -- средний уровень показателя по одноименным месяцам за ряд лет ;
Т -- число лет .
При наличии тренда индекс сезонности определяется на основе методов , исключающих влияние тенденции . Порядок расчета следующий :
1) для каждого уровня определяют выравненные значения по тренду f(t);
2) рассчитывают отношения ;
3) при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле 34 :
,(Т -- число лет). (34)
Другим методом изучения уровня сезонности является гармонический анализ . Его выполняют , представляя временной ряд как совокупность гармонических колебательных процессов .
Для каждой точки этого ряда справедливо выражение , записанное в виде формулы 35 :
(35)
при t = 1, 2, 3, ... , Т.
Здесь -- фактический уровень ряда в момент (интервал) времени t;
f(t) – выравненный уровень ряда в тот же момент (интервал) t
-- параметры колебательного процесса (гармоники) с номером n , в совокупности оценивающие размах (амплитуду) отклонения от общей тенденции и сдвиг колебаний относительно начальной точки .
Общее число колебательных процессов , которые можно выделить из ряда , состоящего из Т уровней , равно Т/2. Обычно ограничиваются меньшим числом наиболее важных гармоник . Параметры гармоники с номером n определяются по формулам 36 –38 :