Реферат: Риск в задачах линейного программирования
Различают альтернативные варианты матрицы :
1) 2) 3) 4)
5) 6) 7) 8)
9) 10) 11) 12)
13) 14) 15) 16)
Составим задачи линейного программирования, соответствующие каждому значению матрицы А, которые достигаются с известными вероятностями. Каждую из этих задач решим на ЭВМ симплекс-методом.
1) x1 = 0; x2 = 42,24924; z = 126,3252; p = 0,012
2) x1 = 0; x2 = 42,24924; z = 126,3252; p = 0,048
3) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,018
4) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,012
5) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,028
6) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,072
7) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,056
8) x1 = 0; x2 = 42,24924; z = 126,3252; p = 0,048
9) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,028
10) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,168
11) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,018
12) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,072
13) x1 = 107,7519; x2 = 0; z = 149,7752; p = 0,042
14) x1 = 0; x2 = 42,24924; z = 126,3252; p = 0,112
15) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,168
16) x1 = 0; x2 = 39,82808; z = 119,086; p = 0,168
Распределение случайной величины у максимального дохода полученное в результате вычислений :
Z | 126,32 | 126,32 | 119,086 | 149,77 | 149,77 | 119,086 | 149,77 | 126,32 |
P | 0,012 | 0,048 | 0,018 | 0,012 | 0,028 | 0,072 | 0,056 | 0,048 |
Z | 149,77 | 119,086 | 149,77 | 119,08 | 149,77 | 126,32 | 119,08 | 119,08 |
P | 0,028 | 0,168 | 0,018 | 0,168 | 0,042 | 0,112 | 0,168 | 0,168 |
1) В силу критерия ожидаемого значения имеем среднее значение максимального дохода.
M(z) = 149,7*0,012 + 126,3*0,048 + 119,08*0,018 + 149,7*0,012 + 149,7*0,028 +