Реферат: Роль текстовых задач в развитии логического мышления младших школьников
Графический способ даёт возможность более тесно установить связь между арифметическим и геометрическим материалами, развить функциональное мышление детей.
Следует отметить, что благодаря применению графического способа в начальной школе можно сократить сроки, в течение которых ученик научится решать различные задачи. В то же время умение графически решать задачу – это важное политехническое умение.
Графический способ даёт иногда возможность ответить на вопрос такой задачи, которую дети ещё не могут решить арифметическим способом и которую можно предлагать во внеклассной работе.
Решение задач различными способами – дело непростое, требующая глубоких математических знаний, умения отыскивать наиболее рациональные решения.
Этапы решения задач.
Решение текстовых задач – это сложная деятельность, содержание которой зависит как от конкретной задачи, так и от умений решающего. Тем не менее, в ней можно выделить несколько этапов:
1. Ознакомление с содержанием задачи;
2. Поиск решения задачи;
3. Выполнение решения задачи;
4. Проверка решения задачи.
Выделенные этапы органически связанны между собой, и работа на каждом этапе ведётся на этой ступени преимущественно под руководством учителя.
Ознакомиться с содержанием задачи – значит, прочитав её, представить жизненную ситуацию, отраженную в задаче. Читают задачу, как правило, дети. Очень важно научить детей правильно читать задачу: делать ударение на числовых данных и на словах, которые определяют выбор действия, таких, как «было», «уехали», «осталось», «стало поровну» и т.п., выделять интонацией вопрос задачи.
Задачу дети читают один – два, а иногда и большее число раз, но постепенно их надо приучать к запоминанию задачи с одного чтения, так как в этом случае они будут сразу читать задачу более сосредоточенно.
После ознакомления с содержанием задачи можно приступить к поиску её решения: ученики должны выделить величины, входящие в задачу; данные и искомые числа, установить связи между данными и искомым и на этой основе выбрать соответствующие арифметические действия.
Выделяются несколько приёмов поиска решения задачи.
Иллюстрация задачи – это использование средств наглядности для выявления величин, входящих в задачу, данных и искомых чисел, а также для установления связей между ними.
Иллюстрация может быть предметной и схематической. В первом случае используются для иллюстрации либо предметы, либо рисунки предметов, о которых идёт речь в задаче: с их помощью иллюстрируется конкретное содержание задачи.
Предметная иллюстрация помогает создать яркое представление той жизненной ситуации, которая описывается в задаче, что в дальнейшем послужит отправным моментом для выбора действия. Предметной иллюстрацией пользуются только при ознакомлении с решением задачи нового вида и преимущественно в 1 классе.
Начиная с 1 класса, используется и схематическая – это краткая запись задачи.
В краткой записи фиксируются в удобообразной форме величины, числа данные и искомые, а также некоторые слова, показывающие, о чём говорится в задаче: «было», «положим», «стало» и т.п., и слова, обозначающие отношения: «больше», «меньше», «одинаковая» и т.п.
Краткую запись задачи можно выполнять в таблице и без неё, а также в форме чертежа.
Иллюстрацию в виде чертежа целесообразно использовать при решении задач, в которых даны отношения значений величин (больше, меньше, столько же), а также при решении задач, связанных сдвижением. При этом надо соблюдать указанные в условии отношения: большее расстояние изображать большим отрезком.
Чертеж наглядно иллюстрирует отношение значений величин, а в задачах на движение схематически изображает соответствующую ситуацию.
Любая из названных иллюстраций только тогда поможет ученикам найти решение, когда её выполняют сами дети, поскольку только в этом случае они будут анализировать задачу сами.
Дети могут установить связи между данными и искомым и выбрать соответствующее арифметическое действие только с помощью учителя. В этом случае учитель проводит специальную беседу, которая называется разбором задачи.
При разборе задачи нового вида учитель должен в каждом отдельном случае поставить детям вопросы так, чтобы навести их на правильный или осознанный выбор арифметических действий.
Очень важно чтобы вопросы не были подсказывающими, а вели бы к самостоятельному нахождению пути решения задачи.
Разбор задачи заканчивается составлением плана решения.
План решения – это объяснение того, что узнаём, выполнив то или иное действие, и указания по порядку арифметических действий.