Реферат: Розробка та відлагодження програмного забезпечення віртуальної лабораторії на базі програмно-відладочного
4) Розробка необхідного програмного забезпечення як на рівні ПК, так і на рівні АЗВП;
5) Отримання необхідних точносних так якісних показників.
2.3 Достоїнства використання відкритої архітектури програмного забезпечення ВВК
Основні достоїнства використання відкритої архітектури ВВК полягають у можливості простого інтегрування ВП до складу вимірювального комплексу. Ця можливість забезпечується за допомогою блочно-модульного принципу побудови програмного забезпечення ПК та створення єдиної програмного оболонки., в якій достатньо просто можна розширювати бібліотеки користувача. Це і дозволяє змінювати функціональні можливості окремих ВП, а також зміст або конфігурацію ВВК.
3. Існуючи методи побудови ВП
Зараз відома велика кількість різних віртуальних приладів, характеристики яких визначаються в основному технічними параметрами їх апаратних засобів (АЗВП). Результати аналізу існуючих способів побудови останніх показали, що вони можуть бути реалізовані як:
· простіші модулі з одним лише АЦП або ЦАП;
· звукові карти ПК;
· універсальні плати збору даних на базі АЦП;
· універсальні ЦАП;
· універсальні плати цифрової обробки сигналів;
· спеціалізовані плати (осцилографи, генератори і т.д.).
Аналіз показує, що простіші модулі з АЦП та ЦАП, а також звукові карти, дозволяють створити ВП з дуже обмеженими функціональними можливостями. З їх допомогою неможливо реалізувати цифрові прилади (логічні аналізатори, генератори слів, вимірювачі частоти та ін.). Плати АЦП та ЦАП реалізуються в основному на основі «жорсткої» логіки. Це дозволяє, у ряді випадків, мінімізувати як розміри, так і вартість апаратних засобів віртуальних приладів. Однак при цьому збільшуються вимоги до ПК, тому що на нього покладається вся обробка вхідних сигналів.
Універсальні плати для цифрової обробки сигналів не дозволяють реалізувати аналогові ВП, такі, наприклад, як осцилографи, мультиметри, аналізатори спектра та ін. Спеціалізовані плати ВП реалізуються сьогодні в основному на основі «програмованої» логіки (на мікроконтролерах – МК та/або програмованих логічних інтегральних схемах – ПЛІС). Це дозволяє перекласти частину обробки вхідних сигналів на АЗВП, що істотно розвантажує ПК.
Таким чином, у кожному способі можливі варіанти реалізації схем як на «жорсткій», так і на «програмованій» логіці. У першому випадку наявність декількох каналів вводу-виводу сигналів дозволяє отримати більш низьке споживання, а в другому – створити інтелектуальний АЗВП. Однак таким чином реалізуються тільки окремі ВП.
4. Особливості реалізації ВВК з відкритою архітектурою при проведенні лабораторно-практичних робіт у процесі навчання основам проектування й програмування мікроконтролерних пристроїв і систем
4.1. Концепція побудови лабораторного практикуму
Пропонується наступна концепція побудови нового лабораторного практикуму:
1.Спочатку використовується ряд лабораторних робіт, пов’язаних з набуттям практичних навичок програмування внутрішньої структури МК та основних периферійних пристроїв, що входять до його складу (порти вводу\виводу, пам’ять даних, таймери-лічильники, система переривань тощо).
2. На другому рівні навчання розробляються прости мікроконтролерні пристрої з використанням деяких зовнішніх пристроїв (клавіатури, різноманітних індикаторів, цифро-аналогових перетворювачів та інших датчиків вхідних сигналів). Ці периферійні пристрої можуть входити до складу навчально-відлагоджувальних стендів або знаходитись зовні. При цьому повинні застосовуватися також програмні модулі, розроблені та відлагоджені на попередньому рівні навчання.
3. На третьому рівні навчання розроблюються більш складні мікроконтролерні пристрої і системи з участю персональних комп’ютерів (наприклад, віртуальні вимірювальні пристрої).
4. Відлагодження мікроконтролерних пристроїв на другому й третьому етапах навчання практично неможливо без використання вимірювальних приладів (генераторів сигналів, осцилографів, логічних аналізаторів, та інших), в якості таких з успіхом можуть використовуватися віртуальні прилади на основі ПК.
5. Апаратні та програмні засоби ЛП повинні дозволяти студенту використовувати для розробки мікроконтролерних пристроїв різні типи МК(AVR, PIC або MCS-51).
6. Лабораторний практикум повинен дозволяти виконання завдань в дистанційному режимі. Це знову ж таки диктує необхідність використання в структурі апаратних засобів віртуальних приладів, які будуть доступними користувачеві (студенту). При цьому також необхідно організувати роботу користувача з методичними матеріалами, апаратними та програмними засобами. А це в свою чергу вимагає наявність простого і наглядного графічного інтерфейсу ЛП.
4.2. Структура лабораторних робіт
Лабораторні роботи складені за блочно-ієрархічним підходом. Згідно якого, перші лабораторні роботи які стоять на нижчому ієрархічному ступеню, самі малі за складністю та об’ємом. Вони включають у себе роботу з одним периферійним приладом МК. Так можливо більше поглибити знання шляхом детального розглядання окремої задачі. На наступному ступені розглядаються задачі з додатковими завданнями, які потребують, готові вже на попередньому етапі, алгоритми та рішення, а ті в свою чергу становлять фундамент для наступного ієрархічного рівня. Так до тих пір, поки не реалізується завдання сконструювати який не будь багатофункціональний мікроконтролерний прилад чи систему. Цей підхід проілюстровано на рисунку 2.1.
Завдання у лабораторному практикумі забезпечують просте засвоювання знань за різними темами, так як охоплюються більшість функціональних вузлів, у кожній наступній роботі є можливість використовувати завдання для виконання з вимогами до попередніх робіт. Наприклад, вивчаючи роботу таймера та формування часових інтервалів легше реалізовувати та перевіряти її за допомогою лінійки світлодіодної індикації. Або, навчившись вводити аналогові сигналі і передавати дані до ПК, можна перейти до реалізації віртуального осцилографа.
4.3. Прилади, необхідні для виконання лабораторних робіт
Для побудови віртуального вимірювального комплексу необхідно з'ясувати, які прилади повинні входити в його структуру. Для цього проведений аналіз завдання для лабораторних робіт з дисципліни «Проектування мікроконтролерних пристроїв», що показує, що для їхнього виконання необхідні наступні прилади:
· Генератор слів;
· Генератор сигналів довільної форми;
· Логічний аналізатор;
· Осцилограф.
Нижче наведена таблиця із вказівкою всіх лабораторних робіт і приладів, необхідних для виконання кожної роботи.
Осцилограф | Генератор байтів | Генератор сигналів | Логічний аналізатор | Мультиметр | Частотомір |
Лабораторна робота №1 | + | + | |||
Лабораторна робота №2 | + | + | |||
Лабораторна робота №3 | + | ||||
Лабораторна робота №4 | + | ||||
Лабораторна робота №5 | + | + | |||
Лабораторна робота №6 | + | ||||
Лабораторна робота №7 | + | + |
Таблиця 1. Прилади для лабораторних робіт