Реферат: Рухова витривалість школярів в легкій атлетиці та її розвиток
План
1. Загальні поняття, фізіологічні та біоенергетичні основи витривалості
2. Вікові, статеві та індивідуальні особливості розвитку рухової витривалості
3. Розвиток витривалості в молодшому шкільному віці
4. Розвиток витривалості в середньому шкільному віці
5. Розвиток витривалості в старшому шкільному віці
1. Загальні поняття, фізіологічні та біоенергетичні основи витривалості
Рухова витривалість — здатність до тривалого виконання м'язової роботи на необхідному рівні її ефективності.
З фізіологічної точки зору ця здатність визначається здібністю організму протистояти втомі, яка представляє собою процес, що виник і розвивається під час роботи і супроводжується рядом змін в організмі, які призводять до падіння його працездатності.
Підтримка необхідної високої ефективності рухів залежить від функціональних можливостей та інтегрованості діяльності всіх систем організму: центральної нервової системи, зовнішнього дихання, серцево-судинної, крові, сенсорних, гормональної та вивідної. Ступінь їх участі, напруженість функціонування залежать від інтенсивності та тривалості роботи і умов діяльності.
Енергетичною основою витривалості є аеробні та анаеробні можливості організму.
Аеробні можливості — об'єднують широкий комплекс властивостей організму, які зумовлюють поглинання, транспорт та утилізацію кисню. Аеробні процеси пов'язані з окисом вуглеводів та жирів киснем повітря. Розгортання цих процесів здійснюється поступово, досягаючи максимуму через 2—3 хвилини початку інтенсивної роботи. Маючи меншу потужність в порівнянні з анаеробною, аеробні процеси завдяки значним запасам вуглеводів та жирів можуть забезпечити виконання роботи протягом тривалого часу.
Окислювальний механізм забезпечує ресинтез АТФ в умовах безперервного надходження кисню в міхотондрії м'язових клітин та використовує в якості субстратів окислення вуглеводи (глікоген та глюкозу), жири та ліпіди (жирні кислоти) та частково білки (амінокислоти). При виконанні легкої роботи на рівні 50% МСК (ЧСС = 130—140 уд/хв.) з граничною тривалістю до декількох годин більша частина енергії для скорочення м'язів створюється за рахунок окислювання жирів (ліполіза). Під час більш важкої праці — 60% від МСК (ЧСС — не більше 150 уд/хв.) значну частину енергопродукції забезпечують вуглеводи. При роботах, близьких до МСК, переважна частина енергії створюється за рахунок окислювання вуглеводів.
Аеробна продуктивність залежить, від таких функцій дихальної, серцево-судинної систем і системи крові:
а) обміну газів в легенях, тобто легеневої вентиляції, який характеризується хвилинним обсягом дихання;
б) дифузією кисню з альвеол у кров — насичення крові киснем, яке лімітується в основному кисневою місткістю крові (характеризується кількістю еритроцитів та відсотком змісту гемоглобіну), та кровопостачання легенів, яке зумовлено щільністю капілярної мережі навколо легеневих альвеол та інтенсивністю кровообігу;
в) транспорту кисню кров'ю, пов'язаного з продуктивністю серцево-судинної системи, яка характеризується хвилинним обсягом крові (ударний обсяг х ЧСС).
Величина використання кисню (а отже і аеробна продуктивність) пов'язана також з кровопостачанням м'язів — місткістю капілярної мережі.
Найважливішим фактором забезпечення високої продуктивності аеробного механізму енергозабезпечення є здатність працюючих м'язів до утилізації кисню. Утилізація кисню залежить від щільності мітохондрій в м'язових клітинах, їх ферментативної активності, концентрації енергетичних речовин та складу міоглобіну. Окислювальні здібності повільних (красних м'язових волокон значно вище, ніж у швидких (білих) в силу морфофункціональних відмінностей. По співвідношенню в швидких та повільних волокнах можна судити про аеробні можливості м'яза.
Рівень аеробної продуктивності характеризується величинами максимального споживання кисню (МСК). Величина МСК характеризує потужність аеробного процесу, тобто яку кількість кисню організм може поглинути за одиницю часу (за 1 хв.).
Окрім МСК ефективність аеробних процесів відображає рівень анаеробного обміну (ПАНО). ПАНО відповідає такій інтенсивності м'язової діяльності, при якій кисню вже дійсно недостатньо для повного енергозабезпечення та підсилюються анаеробні процеси створення енергії. При інтенсивній роботі по рівню ПАНО концентрація молочної кислоти в крові збільшується від 2,0 до 4,0 ммол/л, що є біохімічним критерієм ПАНО.
ПАНО є важливим критерієм біоенергетичних можливостей організму. Він характеризує максимально можливу інтенсивність роботи (швидкість бігу) без суттєвого поповнення молочної кислоти в м'язах. Показник ПАНО залежить не тільки від обмежених можливостей кисневотранспортних систем, але й в більшому ступені від обмеженої потужності ферментів, необхідних для використання кисню для окислення енергетичних субстратів.
У нетренованих людей поріг аеробного обміну відповідає рівню використання кисню, який складає 50—60% МСК, а у тренованих може досягати 85% від МСК.
Слід підкреслити, що саме максимальну величину аеробних можливостей організму вважають критерієм його фізичного здоров'я та працездатності.
Існуюче поняття «аеробний поріг» (Скиннер, 1981) позначає кордон, нижче рівня якого енергозабезпечення відбувається за рахунок окислювання жирів киснем міоглобіну, лактат — 1,0— 2,0 ммоль/л. Такий режим має місце під час звичайної ходьби.
Анаеробні можливості організму залежать від ефективності кре-атинофосфатного і гліколітичного механізмів енергостворення.
Креатинофосфатний механізм забезпечує миттєвий ресинтез АТФ за рахунок іншого високоенергетичного фосфатного сполучення КРФ. Креатинофосфатне джерело має найбільшу потужність та грає вирішальну роль в енергозабезпеченні робіт граничної потужності (стартовий розгін в спринтерському бігові, зусилля вибухового характеру). Оскільки запас АТФ та КРФ в м'язах обмежений, місткість КРФ механізму невелика, й робота з граничною потужністю, яка забезпечується цим механізмом, може продовжуватись недовго, протягом 6—10 сек.
Гліколітичний механізм забезпечує ресинтез АТФ й КРФ за рахунок анаеробного розщеплення вуглеводів — глікогена та глюкози — зі створенням молочної кислоти (лактату).
Умовою активізації гліколізу виступає зниження концентрації АТФ і підвищення концентрації продуктів її розщеплення — АТФ та неорганічного фосфору. Це активізує ключові глюколітичні ферменти (фосфо-фруктокіназа, фосфорілаза) і тим самим збільшує гліколіз. Місткість гліколітичного джерела лімітується головним чином не складом відповідних субстратів, а концентрацією лактату.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--