Реферат: Сборник задач и расчетно-графических работ по технологии переработки полимеров
Порядок величины D2 совпадает с порядком коэффициента диффузии D1 , полученного в задаче 20 с использованием первого закона Фика. В принципе коэффициент диффузии D в обоих законах Фика – одна и та же величина.
Ответ: D2 =8,98∙10-15 см2 /с
22. Вычислить коэффициент диффузии D1 олигомерных молекул фенолоформальдегидного связующего к поверхности волокна капрон, используя соотношение U=-D1 S(ΔC/δ) (первый закон Фика),где скорость диффузии U=1,85∙10-5 с-1 , движущая сила диффузии ΔС=0,0377 см-3 , толщина переходного слоя δ=0,07 мкм, площадь переходного слоя (поверхность диффузии) S=86,4 м2 . S выразить в см2 , δ- в см.
В данной задаче величина ΔС определена на основе модели 2 переходного слоя (рис.2)
Рис.2 Схема переходного слоя по модели 2
Решение:
D1 =3,98∙10-15
Ответ: D1 =3,98∙10-15 см2 /с
23. Вычислить коэффициент диффузии D2 олигомерных молекул фенолоформальдегидного связующего к поверхности волокна капрон,используя соотношение (второй закон Фика), где ΔС – движущая сила диффузии, δ=0,07 мкм – толщина переходного слоя (путь диффузии), Δτ=90 мин. – продолжительность диффузии.
Следует δ выразить в см, τ- в секундах.
Решение:
Из данного выражения второго закона Фика в конечных приращениях получаем:
D2 =
Из сравнения задач 21 и 23 следует, что при нахождении коэффициента диффузии с использованием второго закона Фика получаемое значение D не зависит от того, по какой модели переходного слоя рассчитывают величину ΔС, т.е величина ΔС в этом случае не имеет большого значения.
Ответ: D2 =8,97∙10-15 см2 /с
24. Используя приведённые кинетические данные зависимости степени превращения xсв ненаполненного эпоксидного связующего и степени превращения такого же связующего в смеси с волокнистым наполнителем (нить лавсан) от продолжительности отверждения τ, найти скорость U= взаимодействия между наполнителем и связующим. Графическим интегрированием зависимости U(τ) найти массовые доли γ связующего,образовавшего переходные слои γ=:
τ,мин |
x,масс. доли |
xсв ,масс. доли | Δx=x-xсв |
(U,с-1 )∙ ∙105 | γ | χ= |
30 | 0,51 | 0,30 | ||||
60 | 0,72 | 0,47 | ||||
90 | 0,80 | 0,64 | ||||
120 | 0,86 | 0,70 | ||||
150 | 0,90 | 0,75 | ||||
180 | 0,93 | 0,80 | ||||
210 | 0,94 | 0,84 | ||||
240 | 0,94 | 0,86 |
Вычислить также параметр влияния χ и указать, чему равна скорость диффузии олигомерных молекул связующего к поверхности элементов наполнителя, если отверждение протекает в диффузионной области.
Решение:
Для вычисления и U продолжительность отверждения τ следует выразить в секундах. Величины Δx и U проходят через максимум, поэтому график U(τ) имеет экстремальную форму. Для графического интегрирования графика U(τ) необходимо:
1) определить количество массовых долей, приходящихся на 1 см2 площади графика – найти “цену” С одного квадратного сантиметра площади, ограниченной данным графиком;
2) выразить в квадратных сантиметрах площади Si полос, соответствующих шагу Δτ=30 мин. при изменении τ от 0 до 240 минут (рис.3);
3) величинаγ1 =CS1 , γ2 =С(S1 +S2 ), γ3 =C(S1 +S2 +S3 ), ….. γ8 =С=