Реферат: Селекция пшеницы на устойчивость к листовой ржавчине

Также в селекции пшеницы используют межродовую гибридизацию. Биологическое разнообразие видов семейства Poaceae, обладающих полезными генами для мягкой пшеницы, охватывает виды рода Triticum L., Aegilops L., Agropyron Gaertn., Secale L. и Hordeum L. Однако наличие барьера нескрещиваемости для некоторых видов, стерильность гибридов в результате отсутствия коньюгации между пшеничными и чужеродными хромосомами затрудняют интрогрессию. Стратегия, которую необходимо применять в каждом конкретном случае скрещивания, зависит от наличия или отсутствия гомологичных геномов скрещиваемых видов и числа хромосом у них.

К настоящему времени разработаны стандартные методы, облегчающие перенос генов от видов, не имеющих родственных геномов с мягкой пшеницей. Одни из них основаны на методах хромосомной инженерии, другие – на методах генетического контроля мейотической рекомбинации, третьи – на методах генной инженерии. Результатом этого является тот факт, что из более чем 40 известных на сегодняшний день генов устойчивости пшеницы к листовой ржавчине – 30 интрогрессированы из родственных видов. Более 300 сортов мягкой пшеницы несут 1В/1R хромосомную транслокацию, определяющую устойчивость к фитопатогенам и продуктивность.

В селекции мягкой пшеницы на устойчивость к листовой ржавчине используют скрещивания гексаплоидных и октоплоидных тритикале с пшеницей с целью получить 1ВL/1RS транслокацию, которая детерминирует устойчивость к болезням. При скрещивании тритикале с пшеницей спонтанно происходит процесс, получивший название misdivision, заключающейся в одновременном присутствии унивалентных хромосом 1В и 1R, разрыва их по центромерам и слияния в новую 1В/1R хромосму. Однако в результате подобных скрещиваний случаются и другие транслокации, которые могут приводить к появлению нежелательных признаков.

Мутагенез.

Для успешного развития селекции желательно повышение разнообразия источников хозяйственно-ценных признаков. Поэтому индуцированный мутагенез, и в первую очередь химический как наиболее эффективный, играет важную роль при создании исходных популяций для отбора.

В исследованиях Института биохимической физики им. Н.М.Эмануэля РАН под действием этиленимина были получены на мягкой озимой пшенице некоторые селекционно-ценные признаки, не характерные для этой культуры. В работах Института при оптимальном сочетании мутагена, его доз и исходного сорта озимой мягкой пшеницы, было выделено значительное количество мутантов, устойчивых к листовой ржавчине – до 12% по отношению ко всем выделенным мутантам. В результате возникновения множественных мутаций обнаружены формы, сочетающие в одном мутанте устойчивость к двум и нескольким фитопатогенам на фоне иных ценных мутантных признаков: высоких адаптивных свойств, высокой урожайности, высоких хлебопекарных качеств, устойчивости к полеганию. Особую ценность представляют мутанты, обладающие комплексной устойчивостью к трем-пяти фитопатогенам, включающим помимо устойчивости к облигатным фитопатогенам устойчивость к сапрофитам (расонеспецифическая устойчивость). Данные мутанты представляют интерес не только как источники каких-либо признаков. Они служат также непосредственным исходным материалом при создании новых сортов. В ряде случаев данный материал не нуждается в селекционной доработке и является готовым сортом, требующим только размножения.

Применение химического мутагенеза для создания доноров новых и редких признаков у озимой мягкой пшеницы, а также для непосредственного использования мутантов с комплексами ценных признаков в виде хозяйственно-ценного исходного материала при создании новых сортов без существенной доработки этого материала сокращает селекционный процесс на 3-4 года.

Методы биотехнологии.

Генетическая трансформация – еще одна возможность введения новых генов в геном культурных форм, дополняющая традиционные методы селекции.

Отдаленная гибридизация культурных злаков с дикорастущими сородичами имеет целью перенос единичных генов или небольших фрагментов хромосом от дикорастущих в геном культурных видов. Но для этого необходимо преодолеть барьер несовместимости – отсутствие конъюгации хромосом в мейозе. У пшеницы в хромосоме 5В были обнаружены гены, влияющие на конъюгацию хромосом, и, таким образом, выявлена возможность в определенной степени управлять этим процессом. Удаляя или нейтрализуя в гибридном ядре ген, ингибирующий конъюгацию негомологичных хромосом, вызывают их спаривание и кроссинговер. Таким путем в Институте селекции растений (Кембридж, Великобритания) был перенесен из генома эгилопса (A. comosum) в геном пшеницы ген, определяющий устойчивость к ржавчине и создан устойчивый высокопродуктивный сорт Compair.

Зерновые культуры являются трудным объектом для генной инженерии. Это обусловлено, прежде всего, отсутствием векторных систем для введения генов в геном клеток злаков. Наиболее эффективная векторная система на основе плазмид Agrobacterium tumefaciens малопригодна для злаков.

Разрабатываются методы прямого переноса генов в клетки растений. К методам прямого переноса чужеродной ДНК в протопласты растений и относится электропарация: кратковременные электрические разряды (1—100 мкс при напряженности поля 1000—10000 В/см2 ) увеличивают проницаемость мембран протопластов, куда и проникает находящееся в растворе ДНК. В MCXA разрабатывается метод введения чужеродной ДНК с использованием электрофореза в агаровом геле. Показана возможность применения данного метода для трансформации каллусов пшеницы с последующей регенерацией из них трансгенных растений.

Также предпринимаются попытки использовать естественный метод переноса – пыльцу для передачи пшенице чужеродной ДНК. При этом пыльцу или инкубируют в растворе, содержащем экзогенный генетический материал, или наносят чужеродную ДНК непосредственно перед цветением на пестики со срезанными рыльцами. Успех трансформации в таких экспериментах составляет 1-3%.

Оригинальный способ введения чужеродной ДНК в злаки разработан в Корнельском университете США. С помощью генетического пистолета в клетки растений выстреливают крохотные вольфрамовые шарики, покрытые генетическим материалом. Например, способ баллистической трансформации применили для введения гена вируса табачной мозаики в клетки лука. Была установлена экспрессия гена в клетках. Метод высокоскоростной баллистической трансформации в настоящее время широко используется в Центре «Биоинженерия», ИМГ, ИФР, ВНИИСБ при создании трансгенных растений пшеницы.

На станции искусственного климата «Биотрон» Института биоорганической химии для увеличения устойчивости российских сортов пшеницы к грибковым заболеваниям ведутся исследования суперэкспрессии генов нескольких тауматин-подобных белков выделенных из риса (TLP) и овса (oatpermI). Для получения трансгенных растений пшеницы используются векторы, сконструированные для экспрессии гетерологичных генов в геномах злаковых культур: psGFP-BAR и pAct1-F. Первая конструкция содержит ген gfp с оптимизированным кодоном для экспрессии в растениях, а также ген bar, придающий устойчивость клеткам растений к гербициду Basta (содержит в качестве активного ингредиента L-phosphinotricin). Вторая векторная конструкция содержит репортерный ген gus. В настоящий момент получена 21 линия трансгенной пшеницы сорта Андрос, в геноме которых подтверждено присутствие последовательностей генов TLP и outperm. В настоящий момент проводятся исследования на предмет увеличения устойчивости полученных растений к различным грибным патогенам пшеницы.

С развитием культуры in vitro появилась реальная возможность более широкого использования гаплоидии в селекции сельскохозяйственных культур. Применение метода культуры клеток позволило осуществить регенерацию растений из генеративных клеток, содержащих гаплоидный набор хромосом. Стало возможным массовое получение гаплоидов. Практическое значение в селекции в настоящее время получили культура пыльников (андрогенез), завязей и семяпочек (гиногенез) и метод гаплопродюсера, который является разновидностью гиногенеза.

В ПНИИЖБ создан сорт озимой пшеницы Смуглянка с использованием культуры пыльников. Он включен в Госреестр РФ в 1997 г. и признан перспективным для Поволжья. Сорт устойчив к листовой ржавчине, мучнистой росе, твердой головне, вынослив к хлебному пилильщику и природному комплексу вирусных и микоплазменных болезней.

Хромосомная инженерия.

Хромосомная инженерия – это замещение хромосом на внутривидовом, межвидовом и межродовом уровнях. Эта технология открывает новые возможности в селекции, когда нужно подправить отдельные признаки, а не реконструировать весь организм, комбинируя в процессе гибридизации тысячи генов.

В мире уже известно около 30 полных замещенных серий у пшеницы. Одной из лучших признана созданная в России серия по комбинации Саратовская 29 х Янецкис Пробат. У сорта Саратовская 29 каждая из 21 пары хромосом замещена на гомологичную хромосому от сорта-донора Янецкис Пробат.

В ряде случаев, когда исчерпана внутривидовая изменчивость, уже не удается усилить до необходимого уровня селекционируемые признаки, прежде всего устойчивость к заболеваниям. Тогда приходится заимствовать необходимые гены у других видов, родов растений, в том числе и у диких сородичей.

В Институте цитологии и генетики СО РАН проводятся межвидовые, межродовые замещения хромосом. Придание мягкой гексаплоидной пшенице Triticum aestivum устойчивости к различным видам ржавчины, мучнистой росе и другим видам заболеваний оказалось возможным при замещении двух пар ее хромосом 5В и 6В на хромосомы от третраплоидной пшеницы Triticum timopheevii.

Аллоцитоплазматические гибриды пшеницы.

Расширение адаптационных возможностей у пшеницы достигается путем создания новых генетических систем в форме гибридов аллоцитоплазматической пшеницы, у которых эффект ядерно-цитоплазматических взаимодействий детерминирует ряд свойств, обеспечивающих более высокий уровень адаптации растений к стрессовым факторам среды. Аллоцитоплазматические гибриды пшеницы (АЦПГ) получают методом возвратных скрещиваний (не менее шести беккроссов) и отбором. Они представляют собой новый синтетический тип растений, у которых ядро T. aestivum L. нормально функционирует в чужеродной цитоплазме.

Перемещение ядра пшеницы, в инородную цитоплазму может вызвать в ряде случаев изменение количественных признаков и биологических свойств растений. Дифференцированное проявление этих изменений дает основание считать, что генам, детерминирующим тот или иной признак, соответствуют определенные плазмагены или другие микроструктуры цитоплазмы, обеспечивающие контроль и передачу определенных генопродуктов. Нарушение этого ядерно-цитоплазматического соответствия приводит к изменению величины признака или его непроявлению, например, под влиянием митохондриального генома изменяются устойчивость растения к патогенам.

Селекционно-генетическая работа по созданию и изучению озимых и яровых форм аллоцитоплазматической пшеницы проводится на аграрном факультете Российского университета дружбы народов с 1981 г. К настоящему времени создана обширная коллекция линий аллоцитоплазматической пшеницы T. aestivum L, сочетающих ядерный геном различных сортов яровой и озимой пшеницы с цитоплазмой таких типов, как Secale cereale, Aegilops ovata, T. timopheevi.

По результатам сравнительного изучения двенадцати яровых линий аллоцитоплазматической пшеницы в 2002 г. в коллекционном питомнике двух научно-исследовательских институтов (Московская область - НИИСХ ЦРНЗ и г. Рязань - НИИ ПТИ АПК) выделена линия аллоцитоплазматической пшеницы на цитоплазме T. timopheevi (АЦПГ T. timopheevi х сорт SV66342), отличающаяся более высоким урожаем зерна и повышенной устойчивостью к болезням по сравнению со стандартным сортом яровой пшеницы Приокская. Так, в условиях Московской области урожай зерна у сорта Приокская составил 43,4 ц/га, а у АЦПГ T. timopheevi x SV66342 - 49,8 ц/га. Пораженность листовой ржавчиной у растений АЦПГ составила 50%, а у стандартного сорта - 70%. Урожай зерна в условиях НИИ ПТИ АПК (г.Рязань) у сорта Приокская - 41,8 ц/га, а у АЦПГ - 47,2 ц/га. Пораженность растений бурой ржавчиной у АЦПГ в этом институте также была ниже, чем у стандартного сорта. Она составила 30%, тогда как у сорта Приокская - 60%.

Используя явление элиминации у гибридов геномом одного вида (рода) растений генома другого, удалось создать ячменно-пшеничные формы, у которых присутствуют ядерный геном пшеницы, цитоплазма и элементы цитоплазматического генома ячменя. Эти аллоплазматические линии по своему фенотипу больше повторяют пшеницу, но у них проявлялись отдельные признаки ячменя, например, раннеспелость и устойчивость к ряду заболеваний.


МЕТОДИКА И ТЕХНИКА СЕЛЕКЦИОННОГО ПРОЦЕССА

Методика оценки селекционного материала на устойчивость к листовой ржавчине.

К-во Просмотров: 463
Бесплатно скачать Реферат: Селекция пшеницы на устойчивость к листовой ржавчине