Реферат: Серия МОНАП: модели, методы, подходы

определение свойств учебной задачи адекватной знаниям обучаемого на следующий шаг обучения.

Подсистема управления обучением построена на основе следующих моделей:

модель предметной области;

модель обучаемого;

модель управления процессом обучения.

В МОНАП могут быть выделены два основных компонента:

сервисные авторские средства, используемые для создания базы знаний и ее поддержки;

функциональные средства, используемые для обучающего диалога и управления.

База знаний представляет собой совокупность сред обучения. Структура базы знаний представлена на рис. 1.

Каждая среда обучения, включенная в базу знаний содержит следующие знания:

знания о свойствах учебных задач (какого типа и сколько операций необходимо выполнить для решения учебного задания);

знания об обучаемом (имя, текущий шаг обучения, свойства учебного задания на следующий шаг обучения, вероятности правильного выполнения операций, вероятности гипотез об уровнях усвоения на текущий шаг);

знания об управлении процессом обучения определяемые соответствующими значениями параметров модели обучения (число гипотез об уровнях обученности, оптимальное значение трудности задания, минимальный уровень усвоения, "порог стресса" и т.д.).

Monitor

MONAP

Directory of Learning Environments


Leaning Environment

LEANERS Base

THEORY Base

Rules Base

PROPETIES Base

Leaning Environment

LEANERS Base

THEORY Base

Rules Base

PROPETIES Base


···

Interchangeable components of

ITS family information base

Subject-dependent subsystems of ITS


Рис. 1. Структура базы знаний

Моделирование процесса обучения

В связи с тем, что невозможно дать точные и однозначные рекомендации по параметрической настройке модели управления обучением для произвольной ПО, возникает необходимость в расширении архитектуры ИОС, а соответственно и инструментальных средств проектирования ИОС за счет включения в них подсистемы моделирования процесса обучения.


??? ?????????????? ?????????? ??? ????????????? ?????? ?????? ???????? ???? ?????????? ?????? ?????????? ????????? (???. 2).

Рисунок 2.


???????? ????????? ?? ????????? ?????????? ????? ???????????? ??????? ?????? ?? ??, ????? ?????? ????? ?????? ?????????? ? ???????????? ? ??? ?????????? ???????????. ???????????? ???? ????????????? ?????-???? ??? ?????????????? ??? GRAD [GaleevI. etal., 1998] ???????, ??? ??????? ???????? ????????? ?????????? ????? ???????? ??????????? ? ????????? ???????? ?? ??, ??? ?????????? ???????? ?????? ???????? ???????????? ?? ?? ??????. ??? ??????????? ???? ??????????? ??????? ????? ???????????? ????? ?????????????. ? ???? ?????? (???. 3) ??????????????? ??????????? ???????? ????? ?????????? ??????? ?????.

Рисунок 3.

Педагогу наглядно представляются итоги идентификации знаний обучаемого (используется байесовский подход) в цифровой и графической формах, а также тип текущей задачи, которая будет предложена обучаемому для выполнения на следующем шаге обучения в соответствии с его состоянием обученности и заданными значениями параметров модели обучения.

Варьируя результаты решения задач и значения параметров модели, педагог может подобрать такие значения, при которых модель обучения будет управлять процессом обучения оптимально с точки зрения педагога. В режиме моделирования доступны две различные формы графического представления итогов идентификации знаний обучаемого. В числовой форме эти же данные приведены в таблице, расположенной над графиком. Первый тип графика (Рис. 3) демонстрирует вероятности правильного применения обучаемым каждой операции на заданном количестве шагов обучения, то есть графически отображает данные, находящиеся в той или иной строке таблицы. Второй тип графика демонстрирует историю изменения состояния обученности обучаемого по конкретной операции (графическое изображение того или иного столбца таблицы). Переключиться между этими двумя типами представления графической информации можно щелкнув левой клавишей мыши на соответствующем заголовке строки или столбца цифровой таблицы соответственно.

В связи с тем, что процесс обучения является многофакторным, динамическим и слабо формализуемым процессом возникает необходимость в наличие инструментов, обеспечивающих педагогу возможность проведения дидактических экспериментов с целью такой настройки, модели управления обучением в ИОС, которая позволяет учитывать конкретные условия использования. Реализованная в МОНАП подсистема моделирования отвечает указанным требованиям.

Интеллектуальная обучающая система, основанная на МОНАП

Во многих научных исследованиях показано, что CALL системы более эффективны, чем традиционный человек-учитель [Yang & Akahory, 1999]. В результате анализа предметной области обучения (грамматики немецкого языка в части склонения имен прилагательных) разработаны структуры предметно-ориентированных подсистем соответствующей экспертной обучающей системы (ИОС GRAD) [GaleevI. etal., 1999]. Подсистема модели обучения спроектирована с помощью инструментальных средств МОНАП. В соответствии с разработанной ранее архитектурой проектируемых ИОС определен состав предметно-ориентированного расширения среды обучения в ИОС GRAD и разработаны программные средства, обеспечивающие её создание и обслуживание, в том числе и возможность построения семейства ИОС в рассматриваемой ПО обучения, имеющих сетевую архитектуру, т.е. использующих общие компоненты информационных баз. Разработанная ИОС GRAD обеспечивая адаптивный процесс освоения обучаемым грамматики немецкого языка в части склонения имен прилагательных представляет собой гибкую систему открытого типа, способную расширяться и изменяться по требованиям эксперта-педагога.

Актуальность усвоения грамматики немецкого языка в части склонения имен прилагательных обусловлена тем, что знания о прилагательном используются как при синтезе, так и при анализе немецкого предложения. В случае синтеза предложения основной задачей при изучении прилагательного является правильное определение его окончания. В случае анализа (понимания) немецкого предложения знания о прилагательном могут играть важнейшую роль при решении целого ряда задач анализа:

К-во Просмотров: 285
Бесплатно скачать Реферат: Серия МОНАП: модели, методы, подходы