Реферат: Сетевые методы в планировании

Пример. (рис 2.3)

G1 (X,Гх)=G1 (X1 ,Гх1 ) G2 (Y,Гy)= G2 (X2 ,Гх2 )

X={x1 x2 x3 } Y={y1 y2 }

Гх1 =0 Гу1 ={y1 y1 }

Гх2 ={x1 x3 } Гу2 ={y1 }

Гх3 =0

Z=X x Y={x 1 y1 , x1 y2 , x2 y1 , x2 y2 , x3 y1 , x3 y2 }

Z={z1 z2 z3 z4 z5 z6 }

Рис 2.3

7. Расширение графа.

Расширение графа - это превращение, линии, соединяющей любые две вершины графа в элементарный путь введением новых промежуточных вершин на этой линии.

8. Сжатие графа.

Сжатие графа - это превращение элементарного пути, соединяющего две любые вершины графа, в линию.

9. Стягивание графа.

Если граф содержит вершины Х1 и Y1 , то операцией стягивания называется исключение всех дуг между вершинами Х1 и Y1 и превращение всех вершин в одну общую вершину Х.

Некоторые числа теории графов

Пусть существует мультиграф с b вершинами, p ребрами, и R компонентами связности, тогда цикломатическое число мультиграфа определяется равенством:

V= p-b+R

Матрицы для графов

Матрицей смежности графа G(X,Гх) , содержащего n вершин называется квадратная бинарная матрица А(G) n x n , c нулями на диагонали. Число единиц в строке равно степени соответствующей вершины.

Матрицей инциденций ориентированного графа G(X,U) называется прямоугольная матрица порядка [m x n] n - мощность множества Х, m - мощность множества U. Каждый элемент которой определяется следующим образом:

1, если хi - начало дуги Uj

aij = -1, если хi - конец дуги Uj

0, если хi - не инцидентна дуге Uj

Пример.

Построим матрицы смежности (М1) и инциденций (М2) для графа G(X,U) (рис 2.1).

Рис 2.1

Дополнительная матрица графа G(X,U) представляет собой квадратную матрицу А1 , которая получается из матрицы смежности этого графа путем замены всех нулей единицами и наоборот.

Деревья и прадеревья

Деревом называется неориентированный связный граф с числом вершин не менее двух, не содержащий петель и циклов. Вершины, инцидентные только одной дуге дерева, называются висячими.

Прадрево - ориентированное дерево.

Корень прадерева - вершина у которой Р+ (х)=0 .

Глава 2

Календарное планирование программ сетевыми методами

К-во Просмотров: 551
Бесплатно скачать Реферат: Сетевые методы в планировании