Реферат: Штучні нейронні мережі

Про роботу мозку в даний час відомо дуже мало, тому штучні нейронні мережі (neural networks) є надзвичайно спрощеною моделлю біологічних нейронних мереж. Особливістю нейромереж (neuronet) є те, що вони навчаються, а не програмуються.


1. Біологічні нейронні мережі

Нервова система людини побудована з елементів (нейронів), має приголомшуючу складність. Близько 1011 нейронів беруть участь в приблизно 1015 передаючих зв'язках, що мають довжину метр і більше. Кожен нейрон володіє багатьма якостями, спільними з іншими елементами тіла, але його унікальною здатністю є прийом, обробка і передача електрохімічних сигналів по нервових шляхах, які утворюють комунікаційну систему мозку.

Рис.1. Біологічний нейрон

На рис. 1 показана структура пари типових біологічних нейронів. Дендрити (входи нейрона) йдуть від тіла нервової клітини до інших нейронів, де вони приймають сигнали в точках з'єднання (синапсах). Прийняті синапсом вхідні сигнали підводяться до тіла нейрона. Тут вони підсумовуються, причому одні входи стимулюють активізацію нейрона, а інші – зниження його активності. Коли сумарна активність (збудження) нейрона перевищує деякий поріг, нейрон переходить в активний стан, посилаючи по аксону (виходу нейрона) сигнал іншим нейронам. У цієї основної функціональної схеми багато спрощень і виключень, проте більшість штучних нейронних мереж моделює лише ці прості властивості.


2. Штучний нейрон

Основними компонентами нейромережі є нейрони /neurons/ (елементи, вузли), які з’єднані зв’язками. Сигнали передаються по зваженим зв’язкам (connection), з кожним з яких пов’язаний ваговий коефіцієнт (weighting coefficient) або вага.

Моделі НМ – програмні і апаратні, найбільш поширені – програмні.

Використання – розпізнавання образів, прогнозування, створення асоціативної пам’яті.

Штучний нейрон імітує в першому наближенні властивості біологічного нейрона. На вхід штучного нейрона поступає множина сигналів, які є виходами інших нейронів. Кожен вхід множиться на відповідну вагу, аналогічну його синаптичній силі, і всі виходи підсумовуються, визначаючи рівень активації нейрона. На рис.2 представлена модель, що реалізує цю ідею. Хоча мережеві парадигми досить різноманітні, в основі майже всіх їх лежить ця конфігурація. Тут множина вхідних сигналів, позначених x1 , x2 ,…, xn , поступає на штучний нейрон. Ці вхідні сигнали, в сукупності позначаються вектором X, відповідають сигналам, що приходять в синапси біологічного нейрона. Кожен сигнал множиться на відповідну вагу w1 , w2 ,…, wn , і поступає сумуючий блок, позначений Σ. Кожна вага відповідає «силі» одного біологічного синаптичного зв'язку (множина ваг в сукупності позначається вектором W). Сумуючий блок, який відповідає тілу біологічного нейрона, складає зважені входи алгебраїчно, створюючи вихід, який ми називатимемо NET. У векторних позначеннях це може бути компактно записано таким чином

NET = XW.


Рис.2. Штучний нейрон

3. Активіаційні функції

Сигнал NET далі, як правило, перетворюється активаційною функцією F і дає вихідний нейронний сигнал OUT = F(NET). Активаційна функція F(NET) може бути:

1. Пороговою бінарною функцією (рис.3а)

,

де Т - деяка постійна порогова величина, або ж функція, що точніше моделює нелінійну передавальну характеристику біологічного нейрона.

2. Лінійною обмеженою функцією (рис.3б)

.

Функцією гіперболічного тангенса (рис.3в)

.

де С > 0 – коефіцієнт ширини сигмоїди по осі абсцис (звичайно С=1).

4. Сигмоїдною (S-подібною) або логістичною функцією (рис.3г)


,

З виразу для сигмоїда очевидно, що вихідне значення нейрона лежить в діапазоні [0,1] (рис.4). Популярність сигмоїдної функції зумовлюють наступні її властивості:

· здатність підсилювати слабкі сигнали сильніше, ніж великі, і опиратися „насиченню” від потужних сигналів;

· монотонність і диференційованість на всій осі абсцис;

· простий вираз для похідної

,

що дає можливість використовувати широкий спектр оптимізаційних алгоритмів.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 561
Бесплатно скачать Реферат: Штучні нейронні мережі