Реферат: Симметрия в неживой природе

ВВЕДЕНИЕ........................................ 2

1. ЗАГЛЯНЕМ В СЛОВАРЬ.............................. 4

2. ВИДЫ СИММЕТРИЙ................................. 5

3. АСИММЕТРИЯ ВНУТРИ СИММЕТРИИ.................. 7

4. СИММЕТРИЯ В ГЕОЛОГИИ........................... 9

4.1. ЛЕГЕНДЫ РУДОКОПОВ............................. 9

4.2.СИММЕТРИЯ ПОМОГАЕТ ОТКРЫВАТЬ МЕСТОРОЖДЕНИЯ 11

5. СИММЕТРИЯ ЗЕМЛИ КАК ПЛАНЕТЫ.................. 15

ЗАКЛЮЧЕНИЕ.................................... 25

ЛИТЕРАТУРА..................................... 26

«...быть прекрасным значит быть симметричным и соразмерным.»

Платон

ВВЕДЕНИЕ

Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик В. И. Вернадский (1863—1945), «слагалось в течение десятков, сотен, тысяч поколений". «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мери и уверенностью человека в большей пригодности для практики правильных форм". Это слова другого нашего замечательного соотечественника, посвятившего изучению симметрии всю свою долгую жизнь, академика А. В. Шубникова (1887—1970). - Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слово «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея инвариантности (т. е. неизменности) относительно некоторых преобразований. Таким образом, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. Например, пятиконечная звезда, будучи повернута на 72° (360° : 5), займет первоначальное положение, а ваш будильник одинаково звенит в любом углу комнаты. Первый пример дает понятие об одном из видов геометрической симметрии — поворотной, а второй иллюстрирует важную физическую симметрию — однородность и изотропность (равнозначность всех направлений) пространства. Благодаря последней симметрии все физические приборы (в том числе и будильник) одинаково работают в разных точках пространства, если, конечно, не изменяются окружающие физические условия. Легко вообразить, какая бы царила на Земле неразбериха, если бы эта симметрия была нарушена!

Таким образом, не только симметричные формы окружают нас повсюду, но и сами многообразные физические и биологические законы гравитации, электричества и магнетизма, ядерных взаимодействий, наследственности пронизаны общим для всех них принципом симметрии. «Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности»,— писал Вернадский. Действительно, еще Платон мыслил атомы четырех стихий — земли, воды, огня и воздуха — геометрически симметричными в виде правильных многогранников. И хотя сегодня «атомная физика» Платона кажется наивной, принцип симметрии и через два тысячелетия остается основополагающим принципом современной физики атома. За это время наука прошла путь от осознания симметрии геометрических тел к пониманию симметрии физических явлений.

Итак, в современном понимании симметрия — это общенаучная философская категория, характеризующая структуру организации систем. Важнейшим свойством симметрии является сохранение (инвариантность) тех или иных признаков (геометрических, физических, биологических и т. д.) по отношению к вполне определенным преобразованиям. Математическим аппаратом изучения симметрии сегодня является теория групп и теория инвариантов.

«Принцип симметрии в XX веке охватывает все новые области. Из области кристаллографии, физики твердого тела он вошел в область химии, в область молекулярных процессов и в физику атома. Нет сомнения, что его проявления мы найдем в еще более далеком от окружающих нас комплексов мире электрона и ему подчинены будут явления квантов».

Этими словами академика В. И. Вернадского и хочется начать короткий разговор о принципах симметрии в неживой природе.

1. ЗАГЛЯНЕМ В СЛОВАРЬ

Во всех случаях, когда отрезки прямой, плоские фигуры или пространственные тела были подобными, но без дополнительных действий совместить их было нельзя, «практически» нельзя, мы встречались с явлением симметрии. Эти элементы соответствовали друг другу, как картина и ее зеркальное отражение. Как левая и правая рука. Если мы возьмем на себя труд заглянуть в «Современный словарь иностранных слов», то обнаружим, что под симметрией понимается «соразмерность, полное соответствие в расположении частей целого относительно средней линии, центра... такое расположение точек относительно точки (центра симметрии), прямой (оси симметрии) или плоскости (плоскости симметрии), при котором каждые две соответствующие точки, лежащие на одной прямой, проходящей через центр симметрии, на одном перпендикуляре к оси или плоскости симметрии, находятся от них на одинаковом расстоянии...»

И это еще не все, как часто бывает с иностранными словами, значений у слова «симметрия» существует множество. В том-то и состоит преимущество подобных выражений, что их можно использовать в случае, когда не хотят дать однозначное определение или просто не знают четкого различия между двумя предметами.

Термин «соразмерный» мы применяем по отношению к человеку, картине или какому-либо предмету, когда мелкие несоответствия не позволяют употребить слово «симметричный».

Давайте также заглянем в Энциклопедический словарь. Мы обнаружим здесь шесть статей, начинающихся со слова «симметрия». Кроме того, это слово встречается во множестве других статей.

В математике слово «симметрия» имеет не меньше семи значений (среди них симметричные полиномы, симметрические матрицы). В логике существуют симметричные отношения. Важную роль играет симметрия в кристаллографии. Интересно интерпретируется понятие симметрии в биологии. Там описывается шесть различных видов симметрии. Мы узнаем, например, что гребневики дисимметричны, а цветки львиного зева отличаются билатеральной симметрией. Мы обнаружим, что симметрия существует в музыке и хореографии (в танце). Она зависит здесь от чередования тактов. Оказывается, многие народные песни и танцы построены симметрично.

Можно увидеть, что это кажущаяся простота уведет нас далеко в мир науки и техники и позволит время от времени подвергать испытанию способности нашего мозга (так как именно он запрограммирован на симметрию).

2. ВИДЫ СИММЕТРИЙ

В отличие от искусства или техники, красота в природе не создаётся, а лишь фиксируется, выражается. Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образы, чей вид неизменно привлекает наше внимание. К числу таких образов относятся некоторые кристаллы, многие растения.

В конформной (круговой) симметрии главным преобразованием является инверсия относительно сферы. Для простоты возьмём круг радиуса R с центром в точке O. Инверсия этого круга определяется как такое преобразование симметрии, которое любую точку P переводит в точку P', лежащую на продолжении радиуса, проходящего через точку P на расстоянии от центра:

OP'=R2 / OP

Конформная симметрия обладает большой общностью. Все известные преобразования симметрии: зеркальные отражения, повороты, параллельные сдвиги представляют собой лишь частные случаи конформной симметрии.

Главная особенность конформного преобразования состоит в том, что оно всегда сохраняет углы фигуры и сферу и всегда переходит в сферу другого радиуса.

Известно, что кристаллы какого-либо вещества могут иметь самый разный вид, но углы между гранями всегда постоянны.

Порассуждаем о зеркальной симметрии . Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична. Сначала представляется, что параллельно одной из его сторон могла бы проходить ось симметрии. Но стоит мысленно попробовать воспользоваться ею, как сразу убеждаешься, что это не так. Несимметрична и спираль.

В то время как симметричные фигуры полностью соответствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 785
Бесплатно скачать Реферат: Симметрия в неживой природе