Реферат: Симметрия

В целом эти представления вполне приемлемы и по сей день. Далее греческие философы делали вывод о том, что Вселенная, несомненно, должна быть построена по образцу математического идеала. Ясно, что у древних греков еще не было фунтиков с мороженым! Иначе бы такой прозаиче­ский предмет, имеющий бесчисленное множество плоскостей симметрии, мог бы нарушить их стройную систему.

Если для сравнения мы рассмотрим куб, то увидим, что он имеет девять плоскостей симметрии. Три из них делят его грани пополам, а шесть проходят через вершины. По сравнению с шаром это, конечно, маловато.

А имеются ли тела, занимающие по числу плоскостей проме­жуточное положение между шаром и кубом? Без сомнения — да. Стоит только вспомнить, что круг, в сущности, как бы состоит из многоугольников. Мы проходили это в школе при вычислении числа p. Если над каждым n - угольником мы воздвигнем n - угольную пирамиду, то сможем провести через нее n плоскостей сим­метрии.

Можно было бы придумать 32-гранную сигару, которая имела бы соответствующую симметрию!

Но если мы тем не менее воспринимаем куб как более симмет­ричный предмет, чем пресловутый фунтик с мороженым, то это связано со строением поверхности. У шара поверхность всего одна. У куба их шесть — по числу граней, и каждая грань пред­ставлена квадратом. Фунтик с мороженым состоит из двух поверхностей: круга и конусообразной оболочки.

Более двух тысячелетий (вероятно, благодаря непосредствен­ному восприятию) традиционно отдается предпочтение «сораз­мерным» геометрическим телам. Греческий философ Платон (427—347 до н. э.) открыл, что из правильных конгруэнтных плоских фигур можно построить только пять объемных тел.

Из четырех правильных (равносторонних) треугольников по­лучается тетраэдр (четырехгранник). Из восьми правильных тре­угольников можно построить октаэдр (восьмигранник) и, нако­нец, из двадцати правильных треугольников — икосаэдр. И толь­ко из четырех, восьми или двадцати одинаковых треугольников можно получить объемное геометрическое тело. Из квадратов можно составить только одну объемную фигуру — гексаэдр (шес­тигранник), а из равносторонних пятиугольников — додекаэдр (двенадцатигранник).

А что в нашем трехмерном мире полностью лишено зеркальной симметрии?

Если на плоскости это была плоская спираль, то в нашем мире таковыми, безусловно, будут винтовая лестница или спи­ральный бур. Кроме того, существуют еще тысячи асимметрич­ных вещей и предметов в окружающей нас жизни и технике. Как правило, винт имеет правую резьбу. Но иногда встречается и левая. Так, для большей безопасности баллоны с пропаном снабжены левой резьбой, чтобы к ним нельзя было привинтить вентиль-редуктор, предназначенный, например, для баллона с другим газом.

Между шаром и кубом, с одной стороны, и винтовой лест­ницей, с другой, существует еще масса степеней симметрии. От куба можно постепенно отнимать плоскости симметрии, оси и центр, пока мы не придем к состоянию полной асимметрии.

Почти у конца этого ряда симметрии стоим, мы, люди, с всего единственной плоскостью симметрии, разделяющей наше тело на левую и правую половины. Степень симметрии у нас такая же, как, например, у обычного полевого шпата (минерала, образующего вместе со слюдой и кварцем гнейс или гранит).

КАК ОТРАЖАЕТ ЗЕРКАЛО

Конечно, все мы знаем, как отражает зеркало, но, если только потребуется описать это точно, несомненно возникнут трудности. Как правило, мы довольны собой, если что-то представляем себе хотя бы «в принципе». А подробности, которые преподаватели физики объясняли нам на доске с помощью мела и линейки, всякий нормальный школьник и сту­дент стараются забыть, и, чем скорее, тем лучше.

Каждый ребенок, исполненный удивления перед окружающим миром, непременно заинтересуется, каким образом зеркало отра­жает его. Но взрослые обычно отвечают в подобных случаях: «Не задавай глупых вопросов!» Человек сникает, начинает стеснять­ся, удивление его постепенно затухает, и он старается больше не проявлять его до конца жизни (а жаль!).

Но вспомним о словах Бертольда Бреста: «Глупых вопросов не быва­ет, бывают только глупые ответы».

Конечно, людей можно разделить на дураков и умных, на больших и маленьких, они разнятся по языку, вероисповеданию, мировоззрению. Можно представить себе и такой способ подраз­деления:

1) люди, которые никогда не удивляются;

2) люди, которые удивляются, но не задумываются над удивившим их явлением;

3) люди, которые, удивившись, спрашивают «а почему?»;

4) люди, которые, удивившись, обращаются к числу и мере.

В зависимости от условий жизни, традиций, степени образо­ванности встречаются и все возможные «промежуточные» сту­пени. Мыслители античности и средневековья изумлялись миру и думали о его тайнах. Но им лишь изредка выпадал случай измерить какое-либо явление.

Только в эпоху Возрождения, то есть в XVI в., люди пришли к убеждению, что измерение лучше слепой веры или схоласти­ческих рассуждений. Этому способствовали экономические инте­ресы, удовлетворить которые можно было только путем разви­тия естественных наук, путем количественных измерений. (Мы видим, что, по существу, меновая стоимость «измерялась» с помощью денег.) Для XVI в. оптика была ультрасовременной наукой. Из стеклянного шара, наполненного водой, которым пользовались как фокусирующей линзой, возникло увеличитель­ное стекло, а из него микроскоп и подзорная труба. Крупнейшей в те времена морской державе Нидерландам требовались для флота хорошие подзорные трубы, чтобы загодя рассмотреть опасный берег или вовремя уйти от врага. Оптика обеспечивала успех и надежность навигации. Поэтому именно в Нидерландах многие ученые занимались ею. Голландец Виллеброрд, Снелль ван Ройен, именовавший себя Снеллиусом (1580 - 1626), наблю­дал (что, впрочем, видели и многие до него), как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения.

Теперь, задним числом, этот закон кажется нам чем-то само собой разумеющимся. Но в те времена он имел огромное, можно сказать, мировоззренческое значение, которое будило философ­скую мысль вплоть до XIX века.

Закон отражения Снеллиуса объясняет явление зеркального отражения.

Каждой точке предмета соответствует её отражение в зеркале, и потому в нём наш правый глаз перемещается на левую сторону. Вследствие этого переноса точек предметы, расположенные дальше, в зеркале тоже кажутся уменьшенными в соответствии с законами перспективы. Технически мы можем реконструировать зеркальное изображение так, словно оно расположено за поверхностью стекла. Но это только кажущееся восприятие. Не случайно животные и маленькие дети часто заглядывают за зеркало; они верят, что изображение таится сзади, словно картина, видимая за окном. Факт перестановки левого и правого правильно осознается только взрослыми.

ОТ ТРЕЛЬЯЖА ДО РАДАРА

 

Должны ли мы считать, что самих себя видим только в «зеркальном отражении» и в лучшем случае лишь на фото и кинопленке можем узнать, как выглядим «на самом деле»?

Конечно нет: достаточно зеркальное изображение вторично отразить в зеркале, чтобы увидеть свое истинное лицо. Нередко в домах трельяжи. Они имеют одно большое главное зеркало в центре и два меньших зеркала по сторонам. Если такое боковое зеркало поставить под прямым углом к среднему, то можно увидеть себя именно в том виде, в каком вас видят окружающие. Зажмурьте левый глаз, и ваше отражение во вто­ром зеркале повторит ваше движение левым глазом. Перед трельяжем вы можете выбирать, хотите ли вы увидеть себя в зеркальном или в непосредственном изображении.

К-во Просмотров: 334
Бесплатно скачать Реферат: Симметрия