Реферат: Симплексный метод решения задач линейного программирования
Далее эта система оформляется в виде симплекс-таблиц:
Примечание. Названия базисных переменных здесь взяты лишь для определенности записи и в реальной таблице могут оказаться другими.
Порядок работы с симплекс таблицей. Первая симплекс-таблица подвергается преобразованию, суть которого заключается в переходе к новому опорному решению.
Алгоритм перехода к следующей таблице такой:
просматривается последняя строка (индексная) таблицы и среди коэффициентов этой строки (исключая столбец свободных членов) выбирается наименьшее отрицательное число при отыскании max, либо наибольшее положительное при задачи на min. Если такового нет, то исходное базисное решение является оптимальным и данная таблица является последней;
просматривается столбец таблицы, отвечающий выбранному отрицательному (положительному) коэффициенту в последней строке- ключевой столбец, и в этом столбце выбираются положительные коэффициенты. Если таковых нет, то целевая функция неограниченна на области допустимых значений переменных и задача решений не имеет;
среди выбранных коэффициентов столбца выбирается тот, для которого абсолютная величина отношения соответствующего свободного члена (находящегося в столбце свободных членов) к этому элементу минимальна. Этот коэффициент называется разрешающим, а строка в которой он находится ключевой;
в дальнейшем базисная переменная, отвечающая строке разрешающего элемента, должна быть переведена в разряд свободных, а свободная переменная, отвечающая столбцу разрешающего элемента, вводится в число базисных. Строится новая таблица, содержащая новые названия базисных переменных:
разделим каждый элемент ключевой строки (исключая столбец свободных членов) на разрешающий элемент и полученные значения запишем в строку с измененной базисной переменной новой симплекс таблицы;
строка разрешающего элемента делится на этот элемент и полученная строка записывается в новую таблицу на то же место;
в новой таблице все элементы ключевого столбца = 0, кроме разрезающего, он всегда равен 1;
столбец, у которого в ключевой строке имеется 0,в новой таблице будет таким же;
строка, у которой в ключевом столбце имеется 0,в новой таблице будет такой же;
в остальные клетки новой таблицы записывается результат преобразования элементов старой таблицы:
В результате получают новую симплекс-таблицу, отвечающую новому базисному решению. Теперь следует просмотреть строку целевой функции (индексную), если в ней нет отрицательных значений (в задачи на нахождение максимального значения), либо положительных (в задачи на нахождение минимального значения) кроме стоящего на месте (свободного столбца), то значит, что оптимальное решение получено. В противном случае, переходим к новой симплекс таблице по выше описанному алгоритму.
3.Алгоритм симплексного метода решения задач линейного программирования
Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:
1. Привести задачу к каноническому виду.
2. Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение ввиду несовместимости Привести системы ограничений).
3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода.
4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается.
5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения.
4.Пример решения задачи симплексным методом
Решение:
Приводим задачу к каноническому виду.
Для этого в левую часть первого ограничения-неравенства вводим дополнительную переменную x6 с коэффициентом +1. В целевую функцию переменная x6 входит с коэффицентом ноль (т.е. не входит).
Получаем: