Реферат: СИНЕРГЕТИКА КАК НАУКА О САМООРГАНИЗАЦИИ

Свое видение данной темы я бы хотел начать с рассмотрения непосредственно основных свойств эволюционных процессов и их отличий от динамических и статистических процессов и явлений в природе, т.к. для понимания о чем в дальнейшем будет идти речь совершено необходимо освещение данных вопросов.

И так, эволюционные процессы характеризуются необратимостью во времени и случайностью изменения хода процесса. Канонической иллюстрацией этих свойств является теория Дарвина. Эволюционные процессы представляют собой разновидность динамических процессов (процессов протекающих во времени).

В физике описание динамических процессов осуществляется с помощью систем дифференциальных уравнений. Традиционно как примеры динамических процессов почти во всех учебниках приводятся: движение маятника или движение одного тела в поле тяготения другого. Эти примеры, однако, являются лишь частным случаем динамических систем – это, так называемые консервативные системы. Их отличительной чертой являет обратимость во времени - система дифференциальных уравнений, описывающая динамический процесс, инвариантна относительно обращения времени. Обратимость процессов во времени имеет интересные последствия.

Консервативные динамические системы принято делить на интегрируемые и неинтегрируемые. Система дифференциальных уравнений проинтегрирована, если найден полный набор ее первых интегралов. Первым интегралом называют функцию, которая сохраняет постоянное значение на всей траектории, определяемой уравнениями движения. Первым интегралом является, например, полная энергия системы. Динамическая система называется интегрируемой, если все ее первые интегралы – аналитические функции координат и скоростей. Первые интегралы позволяют найти состояние системы в любой момент времени, если известно ее состояние в какой-либо предыдущий момент времени. Для интегрируемых систем, т.о. задание состояния системы в один из моментов времени фактически соответствует заданию всей прошлой и будущей истории системы. Это позволяет говорить о предопределенности (детерминированности) поведения интегрированной системы. Так, указанное выше движение одного тела в поле тяготения другого описывается двумя интегралами – интегралом энергии и импульса.

Число первых интегралов совпадает с числом независимых динамических переменных, описывающих состояние системы, которые называются степенями свободы. Структура любой системы характеризуется распределением энергии по внутренним степеням свободы. В интегрируемых консервативных системах это распределение энергии либо остается неизменным, либо периодически меняется, - т.е. в интегрированных системах не происходит смены структур, и система рано или поздно возвращается в начальное состояние. Иными словами интегрируемые консервативные системы не эволюционируют.

В конце прошлого века (1892г.) Пуанкаре доказал существование неинтегрируемых систем - суть его выводов заключалась в том, в системе, описываемой дифференциальными уравнениями, может появиться стохастическое движение (об этом в следующих рефератах). Неинтегрируемая система имеет также полный набор первых интегралов, но не все они являются аналитическими функциями.

Примером неинтегрированной системы являет движение трех тел в поле тяготения друг друга – траектории тел становятся очень сложными и запутанными.

Характерной чертой неинтегрированных систем является отсутствие симметрии между прошлым и будущим - неинтегрированная система эволюционирует во времени! Эволюционные свойства неинтегрируемых систем определяются в основном характером взаимодействия в системе. Систему, в которой стохастичность траекторий есть следствие внутренних взаимодействий, а не случайных внешних воздействий называют динамическим хаосом - движения частиц воспринимаются наблюдателем как случайные блуждания.

Другим классом физических систем являются диссипативные системы. Диссипативные физические системы также приводят к необратимым процессам. "Ярче всего различие между консервативными и диссипативными системами проявляется при попытке макроскопического описания последних, когда для определения мгновенного состояния системы используются такие коллективные переменные, как температура, концентрация, давление и т.д. При рассмотрении поведения этих переменных выясняется, что они не инвариантны относительно операции обращения времени. В качестве простейших примеров диссипативных процессов обычно рассматриваются теплопроводность и диффузия.

В случае изолированных систем, в которых нет никаких обменов с внешней средой, необратимость выражена знаменитым вторым законом термодинамики, в соответствии с которым существует функция переменных состояния системы, изменяющаяся монотонно в процессе приближения к состоянию термодинамического равновесия. Обычно в качестве такой функции состояния выбирается энтропия, и второе начало формулируется так: "производная энтропии по времени не отрицательна". Традиционно это утверждение интерпретируется как "тенденция к возрастанию разупорядоченности" или как “производство энтропии”.

В случае неизолированных систем, которые обмениваются с внешней средой энергией или веществом, изменение энтропии будет обусловлено процессами внутри системы (производство энтропии) и обменами с внешней средой (поток энтропии). Если производство энтропии в соответствии со вторым законом термодинамики неотрицательно, то "поток энтропии" может быть как положительным, так и отрицательным. Если поток энтропии отрицательный, то определенные стадии эволюции могут происходить при общем понижении энтропии. Последнее, согласно традиционной трактовке, означает, что "в ходе эволюции разупорядоченность будет уменьшаться за счет оттока энтропии".

Т.о. эволюционные свойства диссипативных систем уже нельзя объяснить исключительно внутренним взаимодействием частиц.

В центре современных представлений об эволюционных процессах находится понятие "самоорганизации". С точки зрения теории динамического хаоса "феномен самоорганизации можно рассматривать, как рождение структуры из хаоса структур: динамический хаос состоит из структур, под которыми понимается определенная корреляция в расположении частиц друг относительно друга. Время жизни структур зависит от так называемого "времени перемешивания" - если оно достаточно большое, то в распределении вещества системы будут наблюдаться корреляции (структуры).

Примером самоорганизации в изолированной системе является автоволна в активной среде, содержащей источники энергии: это реакции Белоусова-Жаботинского, горение всех видов, импульсы возбуждения в нервных волокнах и мышцах.

В отрытых системах поток энергии может вывести ее из устойчивого состояния (см. выше) - начинается развитие неустойчивостей, а их последующая самоорганизация может привести систему в устойчивое неоднородное состояние. Такие состояния И. Пригожин назвал "диссипативными структурами". Примерами таких структур могут служить автоколебания, возникающие, например, в тонком горизонтальном слое масла при его подогреве снизу (ячейки Бенара) или в лазерах. Другой знаменитый пример – уединенные волны на поверхности воды и в других средах (солитоны).

Общим в описанных выше процессах самоорганизации, является то, что все виды самоорганизации характеры для сложных систем (ансамблей) - под самоорганизацией подразумевается возникновение макроскопических структур (корреляций) в результате коллективного взаимодействия.

Попытка выработки общей концепции объясняющей явления самоорганизации систем получила название "синергетика". Термин "синергетика" происходит от греческого "синергеа" - содействие, сотрудничество. Предложенный Г.Хакеном, этот термин акцентирует внимание на согласованности взаимодействия частей при образовании структуры как единого целого.

Под этим названием объединяются различные направления исследований в различных науках - в физике, биологии, химии, математике. В математике развивается теория динамического хаоса, школа И.Пригожина развивает термодинамический подход к самоорганизации с точки зрения диссипативных структур, а Г.Хакен понимает под структурой состояние, возникающее в результате когерентного (согласованного) поведения большого числа частиц.

Следует отметить, что термин "самоорганизующаяся система" был впервые использован У.Р.Эшби в 1947г. для описания определенной модели поведения кибернетических систем, и, в известном смысле, заменил термин "целесообразность". Это смысловое разнообразие является источником различных спекуляций, в которых каждый трактует "самоорганизацию" на свой манер. С другой стороны, это может свидетельствовать действительно о создании новой парадигмы в истории науки.

Бурные темпы развития новой области, переживающей период «штурма и натиска», не оставляют времени на унификацию понятий и приведение в стройную систему всей суммы накопленных фактов. Кроме того, исследования в новой области ввиду ее специфики ведутся силами и средствами многих современных наук, каждая из которых обладает свойственными ей методами и сложившейся терминологией. Параллелизм и разнобой в терминологии и системах основных понятий в значительной мере обусловлены также различием в подходе и взглядах отдельных научных школ и направлений и в акцентировании ими различных аспектов сложного и многообразного процесса самоорганизации.

Синергетика и синергетики. Подобно тому, как кибернетике Винера предшествовала кибернетика Ампера, имевшая весьма косвенное отношение к «науке об управлении, получении, передаче и преобразовании информации в кибернетических системах», синергетика Хакена имела своих «предшественниц» по названию: синергетику Ч. Шеррингтона, синергию С. Улана и синергетический подход И. Забуского.

Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями.

С. Улам был непосредственным участником одного из первых численных экспериментов на ЭВМ первого поколения (ЭНИВАКе).- проверке гипотезы равнораспределения энергия по степеням свободы. Эксперимент, проведенный над числовым аналогом системы кубических осцилляторов, привел к неожиданному результату, породив знаменитую проблему Ферми-Пасты-Улама: проследив за эволюцией распределения энергии по степеням свободы на протяжении достаточно большого числа циклов, авторы не обнаружили ни малейшей тенденции к равнораспределению. С. Улам, много работавший с ЭВМ, понял всю важность и пользу «синергии, т. е. непрерывного сотрудничества между машиной и ее оператором», осуществляемого в современных машинах за счет вывода информации на дисплей.

Решение проблемы Ферми -Пасты - Улама было получено в начале 60-х годов М. Крускалом и Н.Забуским, доказавшим, что система Ферми - Пасты- Улама представляет собой разностный аналог уравнения Кортевега-де Вриза, и что равнораcпределению энергии препятствует солитон (термин, предложенный H. Забуским), переносящий энергию из одной группы мод в другую. Реалистически оценивая ограниченные возможности как аналитического, так и численного подхода к решению нелинейных задач, И. Забуский пришел к выводу о необходимости единого синтетического подхода. По его словам, «синергетический подход к нелинейным математическим и физическим задачам можно определить как совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений».

Если учесть сложность систем и состояний, изучаемых синергетикой Хакена, то станет ясно, что синергетический подход Забуского (и как составная часть его - синергия Улама) займет достойное место среди прочих средств и методов этой науки. Иначе говоря, уповать только на аналитику было бы чрезмерным оптимизмом.

Особенность синергетики как науки. В отличие от большинства новых наук, возникавших, как правило, на стыке двух ранее существовавших и характеризуемых проникновением метода одной науки в предмете другой, наука возникает, опираясь не на граничные, а на внутренние точки различных наук, с которыми она имеет ненулевые пересечения: в изучаемых наукой системах, режимах и состояниях физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов науки.

Эту особенность Х-науки (если X - синергетика) подробно охарактеризовал Хакен: «Данная конференция, как и все предыдущие, показала, что между поведением совершенно различных систем, изучаемых различными науками, существуют поистине удивительные аналоги. С этой точки зрения данная конференция служит еще одним примером существования новой области науки - Синергетики. Разумеется, Синергетика существует не сама по себе, а связана с другими науками по крайней мере двояко. Во-первых, изучаемые Синергетикой системы относятся к компетенции различных наук. Во-вторых, другие науки привносят в Синергетику свои идеи. Ученый, пытающийся проникнуть в новую область, естественно, рассматривает ее как продолжение своей собственной области науки.

Некоторые математики склонны рассматривать весь круг проблем с точки зрения структурной устойчивости. Все перечисленные разделы науки весьма важны для понимания образования макроскопических структур образования в процессе самоорганизации, но каждый из них упускает из виду нечто одинаково существенное. Укажу лишь некоторые из пробелов. Мир - не лазер. В точках бифуркации решающее значение имеют флюктуации, т. е. стохастические процессы. Неравновесные фазовые переходы обладают некоторыми особенностями, отличными от обычных фазовых переходов, например чувствительны к конечным размерам образцов, форме границ и т.п. В равновесной статистической механике не существуют самоподдерживающиеся колебания. В равновесной термодинамике широко используются такие понятия, как энтропия, производство энтропии и т.д., неадекватные при рассмотрении неравновесных фазовых переходов. Теория катастроф основана на использовании некоторых потенциальных функций, не существующих для систем, находящихся в состояниях, далеких от теплового равновесия. Теория диссипативных структур. Бельгийская школа. И. Пригожина развивает термодинамический подход к самоорганизации. Основное понятие синергетики Хакена (понятие структуры как состояния, возникающего результате когерентного (согласованного) поведения большого числа частиц) бельгийская школа заменяет более специальным понятием диссипативной структуры. В открытых системах, обменивающихся с окружающей средой потоками вещества или энергии, однородное состояние равновесия может терять устойчивость и необратимо переходить в неоднородное стационарное состояние, устойчивое относительно малых возмущений. Такие стационарные состояния получили название диссипативных структур. Примером диссипативных структур могут служить колебания в модели Лефевра-Николиса-При- гожина (так называемом брюсселяторе).

К-во Просмотров: 197
Бесплатно скачать Реферат: СИНЕРГЕТИКА КАК НАУКА О САМООРГАНИЗАЦИИ