Реферат: Синхротронное излучение: из рук физиков - в руки врачей
Принципиально новый терапевтический подход (микролучевая терапия) с использованием СИ был предложен в Брукхэвене около 10 лет тому назад и получил развитие на ESRF [14]. Идея нового метода основана на использовании пучка специальной формы (в виде множества планарных, узких пучков - типа расчески). Экспериментально показано, что благодаря такой структуре пучка после облучения возможна регенерация здоровой ткани. Иначе говоря, микропоражения здоровой ткани исчезают благодаря быстрому воздействию крови, которая сама по себе менее чувствительна к дозе облучения. Пораженные раком клетки при этом разрушаются и не восстанавливаются. Если к тому же свести пучки локально в место расположения опухоли, то терапевтический эффект еще более возрастет. В результате с помощью таких пучков можно эффективно повышать дозу облучения (в сотни и тысячи раз), не разрушая здоровые ткани. При этом лечению поддаются опухоли самых различных органов, включая головной мозг, который сейчас облучают в основном на кобальтовых пушках, вызывающих в отличие от микролучевой терапии более значительные негативные побочные явления.
Синхротронное излучение оптимально подходит для использования в микролучевой терапии, потому что оно обладает высокой интенсивностью, достаточно высокой проникающей способностью и легко формируется с помощью коллиматоров. Модельные расчеты и экспериментальные исследования показали [12], что оптимальной структурой обладает пучок шириной в несколько сантиметров в виде расчески с “зубьями” шириной до 40 мкм при расстоянии между ними около 75 мкм.
Перспективы
Использование синхротронного излучения в медицине имеет хорошие перспективы не только в области рентгеновской диагностики и терапии, но и в более широком плане, который поначалу может показаться фантастическим. Например, с помощью СИ можно создать микроустройства (капсулы с дистанционно управляемыми микродвигателями), которые, двигаясь по сосудам, будут доставлять лекарственные препараты в нужное место и в нужных количествах. Метод создания подобных микроустройств уже достаточно хорошо разработан (глубокая рентгеновская литография); он позволяет изготавливать микродвигатели, химические микрореакторы и другую микротехнику. Выгоды от применения такой техники достаточно очевидны. В медицине это может привести к принципиально новым методам лечения. И дело не только в том, что лекарства будут использованы более эффективно и их потребуется намного меньше, чем при пероральном введении или инъекциях. Одно из возможных применений может быть связано с генной инженерией.
Исследования в области генотерапии болезней человека показывают перспективность введения ДНК-конструкций в стволовые костно-мозговые клетки [15]. Проведение подобных исследований наталкивается на значительные трудности, поскольку используемые в настоящее время хирургические методы проникновения в полость берцовой кости травматичны, вызывают большое количество осложнений и требуют длительного пребывания больных в клинике. Точность введения генетических конструкций при этом сильно снижена. Поэтому использование достижений микромеханики для создания устройств, способных обеспечить микроинвазивную доставку лекарств по кровеносным сосудам, становится актуальными.
В последние годы генетика все чаще вторгается в область практической медицины, что дает весьма впечатляющие результаты. Работы в этом направлении, естественно, находят своих последователей и среди специалистов синхротронных центров. Пока использование пучков СИ в генетических исследованиях можно рассматривать только как предложение, потому что оно еще находится в самой начальной стадии. Тем не менее развитие данного подхода не только возможно, но и вполне реально в ближайшем времени.
Работа выполнена при поддержке Российского фонда фундаментальных исследований. Проект 04-02-16996.
Список литературы
1. Medical Applications of SYNchrotron Radiation / Eds M.Ando, C.Uyama. Tokyo, 1998.
2. Шильштейн С.Ш., Подурец К.М., Соменков В.А., Манушкин А.А. // Поверхность: рентгеновские, синхротронные и нейтронные исследования. 1996. №3-4. С.231-241.
3. Gerasimov V.S., Korneev V.N., Kulipanov G.N. et al. // Nuclear Instruments and Methods in Physics Research. 1998. V.A405. P.525-531.
4. Артемьев А.Н., Манушкин А.А., Недорезов В.Г. и др. // Препринт ИАЭ. 1998. Т.6065/15. С.1-20.
5. Podurets K.M., Pogorelyi D.K., Manushkin A.A. et al. // Crystallography Reports. 2004. V.49. Suppl.1. P.50-54.
6. Кононов Н.К., Беляев А.Д., Игнатов С.М. и др. // Приборы и техника эксперимента. 2004. №5. С.123-125.
7. Arfelli F., Barbiellini G., Bernstoff S. et al. // Reviews of Scientific Instruments. 1995. V. 66. P.1325-1328.
8. Johnston R.E., Washburh D., Pisano E. et al. // Proceedings of International Society for Optical Engine. 1995. V.2432. P.434-441.
9. Ando M., Sugiyama H., Maksimenko A. et al. //Jap. J. Appl. Phys. 2001. V.40. P.L298-L301.
10. Кононов Н.К., Беляев А.Д., Гришкин Ю.Л. и др. // Тезисы доклада на конференции “Медицинская физика-2005” (2-й Евразийский конгресс), М., 21-24 июня 2005 г.
11. World Health Organization. Assessment of Fracture Risk and its Application to Screenung for Postmenopausal Osteoporosis. Geneva, 1994.
12. ШабалинВ.Н., ШатохинаС.Н. // БюллетеньРАМН. 2000. №3. P.45-49.
13. Elleaume H., Charvet A.M., Berkvens P. et al. // Nuclear Instruments and Methods in Physics Research. 1999. V.A428. P.513-527.
14. Charvet А.М. et al. // Proc. of Int. Sch. of Physics “Enrico Fermi”, CXVIII. 1996.
15. Сергиенко В.И. и др. // Патент РФ 99122938.