Реферат: Синтез голографического изображения с помощью компьютера
Соотношения между размерами сеток s П и s Г получим из (1 ) с учетом того, что и
(5)
Выбор сеток в плоскостях П и Г означает, что все непрерывные функции в этих плоскостях могут быть представлены своими дискретными значениями в узлах сетки. Эти значения теперь являются функциями номеров узлов, т.е. m и n в плоскости П, p и q в плоскости Г. Для отличия от непрерывных величин аргументы дискретных величин будем обозначать индексами, например Еmn, вместо Е(хm,уn), Аpq вместо А(р,q). Установим соответствие между основными физическими величинами, рассмотренными ранее, и их цифровыми моделями. Поле в плоскости П представим так:
(6)
дискретное преобразование Фурье от h mn определит соотношение:
(7)
Примем c учетом (6)
(8)
Цифровая модель голограммы Фурье будет иметь вид
(9)
где
(10)
Величину можно интерпретировать как коэффициент двойного ряда Фурье от дискретной функции, заданной на двумерном интервале MN. При этом в уравнении голограммы последнее слагаемое является не чем иным, как косинусным коэффициентом Фурье изображения предмета. С учетом изложеного уравнение цифровой голограммы Фурье, удобное для расчетов на ЭВМ, принимает вид:
(11)
Здесь в общем случае имеем
(12)
(13)
(14)
В двух первых формулах последние члены в прямоугольных скобках используются при наличии рассеивателя со случайной фазой. Если рассеиватель не используют, то они равны нулю и формула упрощается.
При компьютерном расчете структуры голограммы исходной информацией является изображение, которое разбивают на отдельные участки в соответствии с выбранной сеткой (т.е. из изображения делают выборку значений Еmn в узлах сетки), а также задаваемые параметры M, N, k Г, . В результате расчета должны быть получены величины прозрачности голограммы в узлах сетки Г .
Основой вычисления является выполнение дискретного преобразования Фурье (ДПФ), причем двумерное преобразование выполняется в два этапа: сначала по строкам, а затем по столбцам. Последовательность вычислений показана на рис.2 . Для выполнения одномерных преобразований используется алгоритм быстрого преобразования Фурье (БПФ).
Для удобства вычислений матрицу , полученную после преобразования строк, транспонируют и повторное преобразование также выполняют по строкам. В результате двойного БПФ получают коэффициенты и по которым и определяют значения . Результаты вычислений вместе с заданными параметрами используют для расчета прозрачности голограммы по ее формуле. Эти значения и выдает машина.
Отпечатанную цифровую голограмму затем фотографируют с соответствующим уменьшением и используют для восстановления
|
Рис. 2 Последовательность вычислений голограммы Фурье |
изображения оптическим путем. Очень часто голограмму Фурье пеставляют в двоичном (бинарном) виде. В этом случае ее прозрачность имеет только два значения: 0 или 1. Двоичную голограмму рассчитывают следующим образом. Прозрачность голограммы как функцию пространственных частот обозначим через . Выберем некоторый порог А'. Если больше или равно А', то величине сопоставим единицу, в противном случае– нуль. Это возможно записать как
(17)
В данном случае 1 соответствует уровню белого, а 0 - черного. Окончательно получим
(18)