Реферат: Система Лотка-Вольтерра

Точка Р – седло

в) точка Q:

Область 1:

Область 2:

Область 3:

Точка Q – исток ( неустойчивый узел)

Кроме того, при поиске собственных значений Якобиана возникает уравнение

Решение уравнения D<0 производилось графически , поскольку аналитическое решение в этом случае представляется затруднительным. Для этого использовался математический пакет Maple 6. При фиксированном значении были рассмотрены точки ()области 3, для которых проверялось неравенство D<0. Таким образом, как видно из рисунка, в 3-ей области появляется подобласть 3’. Неравенство D<0 выполняется в области 3 – 3’ , где вещественные части собственных значений будут положительны. В этой области точка Q превращается в неустойчивый фокус.

Запишем результаты исследования характеристик точек в таблицу:

\Область

Точка

1 2 3 3 – 3’
O сток сток сток сток
P не сущ. исток седло седло
Q не сущ. не сущ. исток неуст. фокус

4.1 Параметрические области системы

4.2 Область 1:

4.3 Область 2:

4.3 Область 3’ :

4.5 Область 3 – 3’ :

5. Биологическая интерпретация модели.

Данная система представляет собой модель взаимного влияния в природе двух животных видов – хищников и жертв. Как видно из рисунков, в этой системе оба вида вымирают. Предельных циклов в системе нет. X – жертвы, Y – хищники. Динамику взаимодействия двух видов описывают три функции: g(x) – функция динамики численности жертв, p(x) – трофическая функция жертв (характеризует число жертв убитых одним хищником), q(x) – трофическая функция хищников (характеризует влияние числа жертв, убиваемых одним хищником, на изменение численности популяции хищников).

К-во Просмотров: 172
Бесплатно скачать Реферат: Система Лотка-Вольтерра