Реферат: Системы небесных координат
Сумма угла данного сферического треугольника и соответствующей стороны полярного треугольника равна 180°:
(13)
и наоборот:
. (14)
На основе этих свойств полярного треугольника и исходя из (8) – (12), можно получить другие зависимости между сторонами и углами сферического треугольника. Так, например:
.
Эти формулы, равно как и другие, которые могут быть получены на основании выражений (13) и (14), справедливы не только для полярного треугольника, но и вообще для всякого сферического треугольника.
Если в сферическом треугольнике один из углов равен 90°, то треугольник называется прямоугольным. Для решения прямоугольных сферических треугольников наиболее употребительны следующие формулы:
.
Для решения сферических треугольников со стороной a = 90° употребляются следующие формулы:
.
ПЕРЕХОД ОТ ЭКВАТОРИАЛЬНЫХ КООРДИНАТ К ГОРИЗОНТАЛЬНЫМ И ОБРАТНО
В основе преобразований экваториальных координат в горизонтальные лежит сферический треугольник PZM (рис. 11), который называется параллактическим . Вершинами его являются зенит Z , полюс мира P и светило М . Сторона ZP представляет собой дугу небесного меридиана, сторона ZM – дугу верти